From a8f2ff0e23b31a59e42b8906936a6187133e89cf Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?T=C3=A9odora=20Hovi?= <teodora.hovi@gmail.com>
Date: Thu, 29 Oct 2020 21:27:00 +0100
Subject: [PATCH] Added final version of the notebook

---
 _notebook/exercice_titanic.ipynb | 1524 ++++++++++++++++++++++++++++--
 1 file changed, 1460 insertions(+), 64 deletions(-)

diff --git a/_notebook/exercice_titanic.ipynb b/_notebook/exercice_titanic.ipynb
index 3ad52ec..09ef120 100644
--- a/_notebook/exercice_titanic.ipynb
+++ b/_notebook/exercice_titanic.ipynb
@@ -20,7 +20,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 21,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -34,7 +34,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 22,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -52,7 +52,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 23,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -61,17 +61,150 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 24,
    "metadata": {},
    "outputs": [
     {
-     "output_type": "execute_result",
      "data": {
-      "text/plain": "   PassengerId  Survived  Pclass  \\\n0            1         0       3   \n1            2         1       1   \n2            3         1       3   \n3            4         1       1   \n4            5         0       3   \n\n                                                Name     Sex   Age  SibSp  \\\n0                            Braund, Mr. Owen Harris    male  22.0      1   \n1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   \n2                             Heikkinen, Miss. Laina  female  26.0      0   \n3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   \n4                           Allen, Mr. William Henry    male  35.0      0   \n\n   Parch            Ticket     Fare Cabin Embarked  \n0      0         A/5 21171   7.2500   NaN        S  \n1      0          PC 17599  71.2833   C85        C  \n2      0  STON/O2. 3101282   7.9250   NaN        S  \n3      0            113803  53.1000  C123        S  \n4      0            373450   8.0500   NaN        S  ",
-      "text/html": "<div>\n<style scoped>\n    .dataframe tbody tr th:only-of-type {\n        vertical-align: middle;\n    }\n\n    .dataframe tbody tr th {\n        vertical-align: top;\n    }\n\n    .dataframe thead th {\n        text-align: right;\n    }\n</style>\n<table border=\"1\" class=\"dataframe\">\n  <thead>\n    <tr style=\"text-align: right;\">\n      <th></th>\n      <th>PassengerId</th>\n      <th>Survived</th>\n      <th>Pclass</th>\n      <th>Name</th>\n      <th>Sex</th>\n      <th>Age</th>\n      <th>SibSp</th>\n      <th>Parch</th>\n      <th>Ticket</th>\n      <th>Fare</th>\n      <th>Cabin</th>\n      <th>Embarked</th>\n    </tr>\n  </thead>\n  <tbody>\n    <tr>\n      <th>0</th>\n      <td>1</td>\n      <td>0</td>\n      <td>3</td>\n      <td>Braund, Mr. Owen Harris</td>\n      <td>male</td>\n      <td>22.0</td>\n      <td>1</td>\n      <td>0</td>\n      <td>A/5 21171</td>\n      <td>7.2500</td>\n      <td>NaN</td>\n      <td>S</td>\n    </tr>\n    <tr>\n      <th>1</th>\n      <td>2</td>\n      <td>1</td>\n      <td>1</td>\n      <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n      <td>female</td>\n      <td>38.0</td>\n      <td>1</td>\n      <td>0</td>\n      <td>PC 17599</td>\n      <td>71.2833</td>\n      <td>C85</td>\n      <td>C</td>\n    </tr>\n    <tr>\n      <th>2</th>\n      <td>3</td>\n      <td>1</td>\n      <td>3</td>\n      <td>Heikkinen, Miss. Laina</td>\n      <td>female</td>\n      <td>26.0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>STON/O2. 3101282</td>\n      <td>7.9250</td>\n      <td>NaN</td>\n      <td>S</td>\n    </tr>\n    <tr>\n      <th>3</th>\n      <td>4</td>\n      <td>1</td>\n      <td>1</td>\n      <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n      <td>female</td>\n      <td>35.0</td>\n      <td>1</td>\n      <td>0</td>\n      <td>113803</td>\n      <td>53.1000</td>\n      <td>C123</td>\n      <td>S</td>\n    </tr>\n    <tr>\n      <th>4</th>\n      <td>5</td>\n      <td>0</td>\n      <td>3</td>\n      <td>Allen, Mr. William Henry</td>\n      <td>male</td>\n      <td>35.0</td>\n      <td>0</td>\n      <td>0</td>\n      <td>373450</td>\n      <td>8.0500</td>\n      <td>NaN</td>\n      <td>S</td>\n    </tr>\n  </tbody>\n</table>\n</div>"
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>PassengerId</th>\n",
+       "      <th>Survived</th>\n",
+       "      <th>Pclass</th>\n",
+       "      <th>Name</th>\n",
+       "      <th>Sex</th>\n",
+       "      <th>Age</th>\n",
+       "      <th>SibSp</th>\n",
+       "      <th>Parch</th>\n",
+       "      <th>Ticket</th>\n",
+       "      <th>Fare</th>\n",
+       "      <th>Cabin</th>\n",
+       "      <th>Embarked</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Braund, Mr. Owen Harris</td>\n",
+       "      <td>male</td>\n",
+       "      <td>22.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>A/5 21171</td>\n",
+       "      <td>7.2500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
+       "      <td>female</td>\n",
+       "      <td>38.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>PC 17599</td>\n",
+       "      <td>71.2833</td>\n",
+       "      <td>C85</td>\n",
+       "      <td>C</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>3</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Heikkinen, Miss. Laina</td>\n",
+       "      <td>female</td>\n",
+       "      <td>26.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>STON/O2. 3101282</td>\n",
+       "      <td>7.9250</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>4</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
+       "      <td>female</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>113803</td>\n",
+       "      <td>53.1000</td>\n",
+       "      <td>C123</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>5</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>Allen, Mr. William Henry</td>\n",
+       "      <td>male</td>\n",
+       "      <td>35.0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>373450</td>\n",
+       "      <td>8.0500</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>S</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "   PassengerId  Survived  Pclass  \\\n",
+       "0            1         0       3   \n",
+       "1            2         1       1   \n",
+       "2            3         1       3   \n",
+       "3            4         1       1   \n",
+       "4            5         0       3   \n",
+       "\n",
+       "                                                Name     Sex   Age  SibSp  \\\n",
+       "0                            Braund, Mr. Owen Harris    male  22.0      1   \n",
+       "1  Cumings, Mrs. John Bradley (Florence Briggs Th...  female  38.0      1   \n",
+       "2                             Heikkinen, Miss. Laina  female  26.0      0   \n",
+       "3       Futrelle, Mrs. Jacques Heath (Lily May Peel)  female  35.0      1   \n",
+       "4                           Allen, Mr. William Henry    male  35.0      0   \n",
+       "\n",
+       "   Parch            Ticket     Fare Cabin Embarked  \n",
+       "0      0         A/5 21171   7.2500   NaN        S  \n",
+       "1      0          PC 17599  71.2833   C85        C  \n",
+       "2      0  STON/O2. 3101282   7.9250   NaN        S  \n",
+       "3      0            113803  53.1000  C123        S  \n",
+       "4      0            373450   8.0500   NaN        S  "
+      ]
      },
+     "execution_count": 24,
      "metadata": {},
-     "execution_count": 4
+     "output_type": "execute_result"
     }
    ],
    "source": [
@@ -112,7 +245,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 25,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -122,15 +255,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 26,
    "metadata": {
     "tags": []
    },
    "outputs": [
     {
-     "output_type": "stream",
      "name": "stdout",
-     "text": "              precision    recall  f1-score   support\n\n           0       0.65      0.94      0.77       157\n           1       0.76      0.28      0.41       111\n\n    accuracy                           0.66       268\n   macro avg       0.70      0.61      0.59       268\nweighted avg       0.69      0.66      0.62       268\n\nscore : 0.664179104477612\n"
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.65      0.94      0.77       157\n",
+      "           1       0.76      0.28      0.41       111\n",
+      "\n",
+      "    accuracy                           0.66       268\n",
+      "   macro avg       0.70      0.61      0.59       268\n",
+      "weighted avg       0.69      0.66      0.62       268\n",
+      "\n",
+      "score : 0.664179104477612\n"
+     ]
     }
    ],
    "source": [
@@ -153,25 +297,28 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 27,
    "metadata": {},
    "outputs": [
     {
-     "output_type": "execute_result",
      "data": {
-      "text/plain": "&lt;AxesSubplot:&gt;"
+      "text/plain": [
+       "<AxesSubplot:>"
+      ]
      },
+     "execution_count": 27,
      "metadata": {},
-     "execution_count": 7
+     "output_type": "execute_result"
     },
     {
-     "output_type": "display_data",
      "data": {
-      "text/plain": "&lt;Figure size 432x288 with 2 Axes&gt;",
-      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"341.238281pt\" version=\"1.1\" viewBox=\"0 0 471.263312 341.238281\" width=\"471.263312pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2020-11-01T23:23:48.555986</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 341.238281 \nL 471.263312 341.238281 \nL 471.263312 0 \nL 0 0 \nz\n\" style=\"fill:#f0f0f0;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 95.439375 245.798906 \nL 396.111375 245.798906 \nL 396.111375 12.518906 \nL 95.439375 12.518906 \nz\n\" style=\"fill:#f0f0f0;\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\"/>\n     <g id=\"text_1\">\n      <!-- PassengerId -->\n      <g transform=\"translate(120.779071 334.038281)rotate(-90)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 19.671875 64.796875 \nL 19.671875 37.40625 \nL 32.078125 37.40625 \nQ 38.96875 37.40625 42.71875 40.96875 \nQ 46.484375 44.53125 46.484375 51.125 \nQ 46.484375 57.671875 42.71875 61.234375 \nQ 38.96875 64.796875 32.078125 64.796875 \nz\nM 9.8125 72.90625 \nL 32.078125 72.90625 \nQ 44.34375 72.90625 50.609375 67.359375 \nQ 56.890625 61.8125 56.890625 51.125 \nQ 56.890625 40.328125 50.609375 34.8125 \nQ 44.34375 29.296875 32.078125 29.296875 \nL 19.671875 29.296875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-80\"/>\n        <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n        <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n        <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n        <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n        <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n        <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n        <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-73\"/>\n        <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-80\"/>\n       <use x=\"55.802734\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"117.082031\" xlink:href=\"#DejaVuSans-115\"/>\n       <use x=\"169.181641\" xlink:href=\"#DejaVuSans-115\"/>\n       <use x=\"221.28125\" xlink:href=\"#DejaVuSans-101\"/>\n       <use x=\"282.804688\" xlink:href=\"#DejaVuSans-110\"/>\n       <use x=\"346.183594\" xlink:href=\"#DejaVuSans-103\"/>\n       <use x=\"409.660156\" xlink:href=\"#DejaVuSans-101\"/>\n       <use x=\"471.183594\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"512.296875\" xlink:href=\"#DejaVuSans-73\"/>\n       <use x=\"541.789062\" xlink:href=\"#DejaVuSans-100\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_2\"/>\n     <g id=\"text_2\">\n      <!-- Survived -->\n      <g transform=\"translate(163.732214 310.778594)rotate(-90)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n        <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n        <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"/>\n        <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-83\"/>\n       <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n       <use x=\"126.855469\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"167.96875\" xlink:href=\"#DejaVuSans-118\"/>\n       <use x=\"227.148438\" xlink:href=\"#DejaVuSans-105\"/>\n       <use x=\"254.931641\" xlink:href=\"#DejaVuSans-118\"/>\n       <use x=\"314.111328\" xlink:href=\"#DejaVuSans-101\"/>\n       <use x=\"375.634766\" xlink:href=\"#DejaVuSans-100\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_3\"/>\n     <g id=\"text_3\">\n      <!-- Pclass -->\n      <g transform=\"translate(206.685357 292.493281)rotate(-90)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 48.78125 52.59375 \nL 48.78125 44.1875 \nQ 44.96875 46.296875 41.140625 47.34375 \nQ 37.3125 48.390625 33.40625 48.390625 \nQ 24.65625 48.390625 19.8125 42.84375 \nQ 14.984375 37.3125 14.984375 27.296875 \nQ 14.984375 17.28125 19.8125 11.734375 \nQ 24.65625 6.203125 33.40625 6.203125 \nQ 37.3125 6.203125 41.140625 7.25 \nQ 44.96875 8.296875 48.78125 10.40625 \nL 48.78125 2.09375 \nQ 45.015625 0.34375 40.984375 -0.53125 \nQ 36.96875 -1.421875 32.421875 -1.421875 \nQ 20.0625 -1.421875 12.78125 6.34375 \nQ 5.515625 14.109375 5.515625 27.296875 \nQ 5.515625 40.671875 12.859375 48.328125 \nQ 20.21875 56 33.015625 56 \nQ 37.15625 56 41.109375 55.140625 \nQ 45.0625 54.296875 48.78125 52.59375 \nz\n\" id=\"DejaVuSans-99\"/>\n        <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-80\"/>\n       <use x=\"60.302734\" xlink:href=\"#DejaVuSans-99\"/>\n       <use x=\"115.283203\" xlink:href=\"#DejaVuSans-108\"/>\n       <use x=\"143.066406\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"204.345703\" xlink:href=\"#DejaVuSans-115\"/>\n       <use x=\"256.445312\" xlink:href=\"#DejaVuSans-115\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_4\"/>\n     <g id=\"text_4\">\n      <!-- Age -->\n      <g transform=\"translate(249.6385 276.377969)rotate(-90)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 34.1875 63.1875 \nL 20.796875 26.90625 \nL 47.609375 26.90625 \nz\nM 28.609375 72.90625 \nL 39.796875 72.90625 \nL 67.578125 0 \nL 57.328125 0 \nL 50.6875 18.703125 \nL 17.828125 18.703125 \nL 11.1875 0 \nL 0.78125 0 \nz\n\" id=\"DejaVuSans-65\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-65\"/>\n       <use x=\"68.408203\" xlink:href=\"#DejaVuSans-103\"/>\n       <use x=\"131.884766\" xlink:href=\"#DejaVuSans-101\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_5\"/>\n     <g id=\"text_5\">\n      <!-- SibSp -->\n      <g transform=\"translate(292.591643 288.739531)rotate(-90)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\nM 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 75.984375 \nL 18.109375 75.984375 \nz\n\" id=\"DejaVuSans-98\"/>\n        <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-83\"/>\n       <use x=\"63.476562\" xlink:href=\"#DejaVuSans-105\"/>\n       <use x=\"91.259766\" xlink:href=\"#DejaVuSans-98\"/>\n       <use x=\"154.736328\" xlink:href=\"#DejaVuSans-83\"/>\n       <use x=\"218.212891\" xlink:href=\"#DejaVuSans-112\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_6\">\n     <g id=\"line2d_6\"/>\n     <g id=\"text_6\">\n      <!-- Parch -->\n      <g transform=\"translate(335.544786 287.700469)rotate(-90)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 75.984375 \nL 18.109375 75.984375 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-104\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-80\"/>\n       <use x=\"55.802734\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"117.082031\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"155.945312\" xlink:href=\"#DejaVuSans-99\"/>\n       <use x=\"210.925781\" xlink:href=\"#DejaVuSans-104\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_7\">\n     <g id=\"line2d_7\"/>\n     <g id=\"text_7\">\n      <!-- Fare -->\n      <g transform=\"translate(378.497929 278.707656)rotate(-90)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 9.8125 72.90625 \nL 51.703125 72.90625 \nL 51.703125 64.59375 \nL 19.671875 64.59375 \nL 19.671875 43.109375 \nL 48.578125 43.109375 \nL 48.578125 34.8125 \nL 19.671875 34.8125 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-70\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-70\"/>\n       <use x=\"48.394531\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"109.673828\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"148.537109\" xlink:href=\"#DejaVuSans-101\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_8\"/>\n     <g id=\"text_8\">\n      <!-- PassengerId -->\n      <g transform=\"translate(7.2 34.50067)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-80\"/>\n       <use x=\"55.802734\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"117.082031\" xlink:href=\"#DejaVuSans-115\"/>\n       <use x=\"169.181641\" xlink:href=\"#DejaVuSans-115\"/>\n       <use x=\"221.28125\" xlink:href=\"#DejaVuSans-101\"/>\n       <use x=\"282.804688\" xlink:href=\"#DejaVuSans-110\"/>\n       <use x=\"346.183594\" xlink:href=\"#DejaVuSans-103\"/>\n       <use x=\"409.660156\" xlink:href=\"#DejaVuSans-101\"/>\n       <use x=\"471.183594\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"512.296875\" xlink:href=\"#DejaVuSans-73\"/>\n       <use x=\"541.789062\" xlink:href=\"#DejaVuSans-100\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_9\"/>\n     <g id=\"text_9\">\n      <!-- Survived -->\n      <g transform=\"translate(30.459688 67.826384)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-83\"/>\n       <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n       <use x=\"126.855469\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"167.96875\" xlink:href=\"#DejaVuSans-118\"/>\n       <use x=\"227.148438\" xlink:href=\"#DejaVuSans-105\"/>\n       <use x=\"254.931641\" xlink:href=\"#DejaVuSans-118\"/>\n       <use x=\"314.111328\" xlink:href=\"#DejaVuSans-101\"/>\n       <use x=\"375.634766\" xlink:href=\"#DejaVuSans-100\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_10\"/>\n     <g id=\"text_10\">\n      <!-- Pclass -->\n      <g transform=\"translate(48.745 101.152098)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-80\"/>\n       <use x=\"60.302734\" xlink:href=\"#DejaVuSans-99\"/>\n       <use x=\"115.283203\" xlink:href=\"#DejaVuSans-108\"/>\n       <use x=\"143.066406\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"204.345703\" xlink:href=\"#DejaVuSans-115\"/>\n       <use x=\"256.445312\" xlink:href=\"#DejaVuSans-115\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_11\"/>\n     <g id=\"text_11\">\n      <!-- Age -->\n      <g transform=\"translate(64.860313 134.477813)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-65\"/>\n       <use x=\"68.408203\" xlink:href=\"#DejaVuSans-103\"/>\n       <use x=\"131.884766\" xlink:href=\"#DejaVuSans-101\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_12\"/>\n     <g id=\"text_12\">\n      <!-- SibSp -->\n      <g transform=\"translate(52.49875 167.803527)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-83\"/>\n       <use x=\"63.476562\" xlink:href=\"#DejaVuSans-105\"/>\n       <use x=\"91.259766\" xlink:href=\"#DejaVuSans-98\"/>\n       <use x=\"154.736328\" xlink:href=\"#DejaVuSans-83\"/>\n       <use x=\"218.212891\" xlink:href=\"#DejaVuSans-112\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_6\">\n     <g id=\"line2d_13\"/>\n     <g id=\"text_13\">\n      <!-- Parch -->\n      <g transform=\"translate(53.537813 201.129241)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-80\"/>\n       <use x=\"55.802734\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"117.082031\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"155.945312\" xlink:href=\"#DejaVuSans-99\"/>\n       <use x=\"210.925781\" xlink:href=\"#DejaVuSans-104\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_14\"/>\n     <g id=\"text_14\">\n      <!-- Fare -->\n      <g transform=\"translate(62.530625 234.454955)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-70\"/>\n       <use x=\"48.394531\" xlink:href=\"#DejaVuSans-97\"/>\n       <use x=\"109.673828\" xlink:href=\"#DejaVuSans-114\"/>\n       <use x=\"148.537109\" xlink:href=\"#DejaVuSans-101\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"QuadMesh_1\">\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 95.439375 12.518906 \nL 138.392518 12.518906 \nL 138.392518 45.844621 \nL 95.439375 45.844621 \nL 95.439375 12.518906 \n\" style=\"fill:#faebdd;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 138.392518 12.518906 \nL 181.345661 12.518906 \nL 181.345661 45.844621 \nL 138.392518 45.844621 \nL 138.392518 12.518906 \n\" style=\"fill:#8b1d5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 181.345661 12.518906 \nL 224.298804 12.518906 \nL 224.298804 45.844621 \nL 181.345661 45.844621 \nL 181.345661 12.518906 \n\" style=\"fill:#821e5a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 224.298804 12.518906 \nL 267.251946 12.518906 \nL 267.251946 45.844621 \nL 224.298804 45.844621 \nL 224.298804 12.518906 \n\" style=\"fill:#971c5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 267.251946 12.518906 \nL 310.205089 12.518906 \nL 310.205089 45.844621 \nL 267.251946 45.844621 \nL 267.251946 12.518906 \n\" style=\"fill:#7d1f5a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 310.205089 12.518906 \nL 353.158232 12.518906 \nL 353.158232 45.844621 \nL 310.205089 45.844621 \nL 310.205089 12.518906 \n\" style=\"fill:#8c1d5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 353.158232 12.518906 \nL 396.111375 12.518906 \nL 396.111375 45.844621 \nL 353.158232 45.844621 \nL 353.158232 12.518906 \n\" style=\"fill:#901d5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 95.439375 45.844621 \nL 138.392518 45.844621 \nL 138.392518 79.170335 \nL 95.439375 79.170335 \nL 95.439375 45.844621 \n\" style=\"fill:#8b1d5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 138.392518 45.844621 \nL 181.345661 45.844621 \nL 181.345661 79.170335 \nL 138.392518 79.170335 \nL 138.392518 45.844621 \n\" style=\"fill:#faebdd;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 181.345661 45.844621 \nL 224.298804 45.844621 \nL 224.298804 79.170335 \nL 181.345661 79.170335 \nL 181.345661 45.844621 \n\" style=\"fill:#33183c;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 224.298804 45.844621 \nL 267.251946 45.844621 \nL 267.251946 79.170335 \nL 224.298804 79.170335 \nL 224.298804 45.844621 \n\" style=\"fill:#781f59;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 267.251946 45.844621 \nL 310.205089 45.844621 \nL 310.205089 79.170335 \nL 267.251946 79.170335 \nL 267.251946 45.844621 \n\" style=\"fill:#821e5a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 310.205089 45.844621 \nL 353.158232 45.844621 \nL 353.158232 79.170335 \nL 310.205089 79.170335 \nL 310.205089 45.844621 \n\" style=\"fill:#a4195b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 353.158232 45.844621 \nL 396.111375 45.844621 \nL 396.111375 79.170335 \nL 353.158232 79.170335 \nL 353.158232 45.844621 \n\" style=\"fill:#d2204c;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 95.439375 79.170335 \nL 138.392518 79.170335 \nL 138.392518 112.496049 \nL 95.439375 112.496049 \nL 95.439375 79.170335 \n\" style=\"fill:#821e5a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 138.392518 79.170335 \nL 181.345661 79.170335 \nL 181.345661 112.496049 \nL 138.392518 112.496049 \nL 138.392518 79.170335 \n\" style=\"fill:#33183c;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 181.345661 79.170335 \nL 224.298804 79.170335 \nL 224.298804 112.496049 \nL 181.345661 112.496049 \nL 181.345661 79.170335 \n\" style=\"fill:#faebdd;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 224.298804 79.170335 \nL 267.251946 79.170335 \nL 267.251946 112.496049 \nL 224.298804 112.496049 \nL 224.298804 79.170335 \n\" style=\"fill:#2b1637;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 267.251946 79.170335 \nL 310.205089 79.170335 \nL 310.205089 112.496049 \nL 267.251946 112.496049 \nL 267.251946 79.170335 \n\" style=\"fill:#a4195b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 310.205089 79.170335 \nL 353.158232 79.170335 \nL 353.158232 112.496049 \nL 310.205089 112.496049 \nL 310.205089 79.170335 \n\" style=\"fill:#921c5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 353.158232 79.170335 \nL 396.111375 79.170335 \nL 396.111375 112.496049 \nL 353.158232 112.496049 \nL 353.158232 79.170335 \n\" style=\"fill:#03051a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 95.439375 112.496049 \nL 138.392518 112.496049 \nL 138.392518 145.821763 \nL 95.439375 145.821763 \nL 95.439375 112.496049 \n\" style=\"fill:#971c5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 138.392518 112.496049 \nL 181.345661 112.496049 \nL 181.345661 145.821763 \nL 138.392518 145.821763 \nL 138.392518 112.496049 \n\" style=\"fill:#781f59;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 181.345661 112.496049 \nL 224.298804 112.496049 \nL 224.298804 145.821763 \nL 181.345661 145.821763 \nL 181.345661 112.496049 \n\" style=\"fill:#2b1637;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 224.298804 112.496049 \nL 267.251946 112.496049 \nL 267.251946 145.821763 \nL 224.298804 145.821763 \nL 224.298804 112.496049 \n\" style=\"fill:#faebdd;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 267.251946 112.496049 \nL 310.205089 112.496049 \nL 310.205089 145.821763 \nL 267.251946 145.821763 \nL 267.251946 112.496049 \n\" style=\"fill:#3a1a41;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 310.205089 112.496049 \nL 353.158232 112.496049 \nL 353.158232 145.821763 \nL 310.205089 145.821763 \nL 310.205089 112.496049 \n\" style=\"fill:#591e50;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 353.158232 112.496049 \nL 396.111375 112.496049 \nL 396.111375 145.821763 \nL 353.158232 145.821763 \nL 353.158232 112.496049 \n\" style=\"fill:#a8185a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 95.439375 145.821763 \nL 138.392518 145.821763 \nL 138.392518 179.147478 \nL 95.439375 179.147478 \nL 95.439375 145.821763 \n\" style=\"fill:#7d1f5a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 138.392518 145.821763 \nL 181.345661 145.821763 \nL 181.345661 179.147478 \nL 138.392518 179.147478 \nL 138.392518 145.821763 \n\" style=\"fill:#821e5a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 181.345661 145.821763 \nL 224.298804 145.821763 \nL 224.298804 179.147478 \nL 181.345661 179.147478 \nL 181.345661 145.821763 \n\" style=\"fill:#a4195b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 224.298804 145.821763 \nL 267.251946 145.821763 \nL 267.251946 179.147478 \nL 224.298804 179.147478 \nL 224.298804 145.821763 \n\" style=\"fill:#3a1a41;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 267.251946 145.821763 \nL 310.205089 145.821763 \nL 310.205089 179.147478 \nL 267.251946 179.147478 \nL 267.251946 145.821763 \n\" style=\"fill:#faebdd;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 310.205089 145.821763 \nL 353.158232 145.821763 \nL 353.158232 179.147478 \nL 310.205089 179.147478 \nL 310.205089 145.821763 \n\" style=\"fill:#ec4a3e;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 353.158232 145.821763 \nL 396.111375 145.821763 \nL 396.111375 179.147478 \nL 353.158232 179.147478 \nL 353.158232 145.821763 \n\" style=\"fill:#ba1656;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 95.439375 179.147478 \nL 138.392518 179.147478 \nL 138.392518 212.473192 \nL 95.439375 212.473192 \nL 95.439375 179.147478 \n\" style=\"fill:#8c1d5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 138.392518 179.147478 \nL 181.345661 179.147478 \nL 181.345661 212.473192 \nL 138.392518 212.473192 \nL 138.392518 179.147478 \n\" style=\"fill:#a4195b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 181.345661 179.147478 \nL 224.298804 179.147478 \nL 224.298804 212.473192 \nL 181.345661 212.473192 \nL 181.345661 179.147478 \n\" style=\"fill:#921c5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 224.298804 179.147478 \nL 267.251946 179.147478 \nL 267.251946 212.473192 \nL 224.298804 212.473192 \nL 224.298804 179.147478 \n\" style=\"fill:#591e50;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 267.251946 179.147478 \nL 310.205089 179.147478 \nL 310.205089 212.473192 \nL 267.251946 212.473192 \nL 267.251946 179.147478 \n\" style=\"fill:#ec4a3e;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 310.205089 179.147478 \nL 353.158232 179.147478 \nL 353.158232 212.473192 \nL 310.205089 212.473192 \nL 310.205089 179.147478 \n\" style=\"fill:#faebdd;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 353.158232 179.147478 \nL 396.111375 179.147478 \nL 396.111375 212.473192 \nL 353.158232 212.473192 \nL 353.158232 179.147478 \n\" style=\"fill:#c81951;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 95.439375 212.473192 \nL 138.392518 212.473192 \nL 138.392518 245.798906 \nL 95.439375 245.798906 \nL 95.439375 212.473192 \n\" style=\"fill:#901d5b;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 138.392518 212.473192 \nL 181.345661 212.473192 \nL 181.345661 245.798906 \nL 138.392518 245.798906 \nL 138.392518 212.473192 \n\" style=\"fill:#d2204c;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 181.345661 212.473192 \nL 224.298804 212.473192 \nL 224.298804 245.798906 \nL 181.345661 245.798906 \nL 181.345661 212.473192 \n\" style=\"fill:#03051a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 224.298804 212.473192 \nL 267.251946 212.473192 \nL 267.251946 245.798906 \nL 224.298804 245.798906 \nL 224.298804 212.473192 \n\" style=\"fill:#a8185a;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 267.251946 212.473192 \nL 310.205089 212.473192 \nL 310.205089 245.798906 \nL 267.251946 245.798906 \nL 267.251946 212.473192 \n\" style=\"fill:#ba1656;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 310.205089 212.473192 \nL 353.158232 212.473192 \nL 353.158232 245.798906 \nL 310.205089 245.798906 \nL 310.205089 212.473192 \n\" style=\"fill:#c81951;\"/>\n    <path clip-path=\"url(#p28652a4765)\" d=\"M 353.158232 212.473192 \nL 396.111375 212.473192 \nL 396.111375 245.798906 \nL 353.158232 245.798906 \nL 353.158232 212.473192 \n\" style=\"fill:#faebdd;\"/>\n   </g>\n   <g id=\"text_15\">\n    <!-- 1 -->\n    <g style=\"fill:#262626;\" transform=\"translate(112.462196 33.044888)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_16\">\n    <!-- -0.005 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(137.303933 33.044888)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 4.890625 31.390625 \nL 31.203125 31.390625 \nL 31.203125 23.390625 \nL 4.890625 23.390625 \nz\n\" id=\"DejaVuSans-45\"/>\n      <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n      <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n      <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_17\">\n    <!-- -0.035 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(180.257076 33.044888)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_18\">\n    <!-- 0.037 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(225.735688 33.044888)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_19\">\n    <!-- -0.058 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(266.163362 33.044888)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 31.78125 34.625 \nQ 24.75 34.625 20.71875 30.859375 \nQ 16.703125 27.09375 16.703125 20.515625 \nQ 16.703125 13.921875 20.71875 10.15625 \nQ 24.75 6.390625 31.78125 6.390625 \nQ 38.8125 6.390625 42.859375 10.171875 \nQ 46.921875 13.96875 46.921875 20.515625 \nQ 46.921875 27.09375 42.890625 30.859375 \nQ 38.875 34.625 31.78125 34.625 \nz\nM 21.921875 38.8125 \nQ 15.578125 40.375 12.03125 44.71875 \nQ 8.5 49.078125 8.5 55.328125 \nQ 8.5 64.0625 14.71875 69.140625 \nQ 20.953125 74.21875 31.78125 74.21875 \nQ 42.671875 74.21875 48.875 69.140625 \nQ 55.078125 64.0625 55.078125 55.328125 \nQ 55.078125 49.078125 51.53125 44.71875 \nQ 48 40.375 41.703125 38.8125 \nQ 48.828125 37.15625 52.796875 32.3125 \nQ 56.78125 27.484375 56.78125 20.515625 \nQ 56.78125 9.90625 50.3125 4.234375 \nQ 43.84375 -1.421875 31.78125 -1.421875 \nQ 19.734375 -1.421875 13.25 4.234375 \nQ 6.78125 9.90625 6.78125 20.515625 \nQ 6.78125 27.484375 10.78125 32.3125 \nQ 14.796875 37.15625 21.921875 38.8125 \nz\nM 18.3125 54.390625 \nQ 18.3125 48.734375 21.84375 45.5625 \nQ 25.390625 42.390625 31.78125 42.390625 \nQ 38.140625 42.390625 41.71875 45.5625 \nQ 45.3125 48.734375 45.3125 54.390625 \nQ 45.3125 60.0625 41.71875 63.234375 \nQ 38.140625 66.40625 31.78125 66.40625 \nQ 25.390625 66.40625 21.84375 63.234375 \nQ 18.3125 60.0625 18.3125 54.390625 \nz\n\" id=\"DejaVuSans-56\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-53\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-56\"/>\n    </g>\n   </g>\n   <g id=\"text_20\">\n    <!-- -0.0017 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(304.662754 33.044888)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"322.363281\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_21\">\n    <!-- 0.013 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(354.595116 33.044888)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-51\"/>\n    </g>\n   </g>\n   <g id=\"text_22\">\n    <!-- -0.005 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(94.35079 66.370603)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_23\">\n    <!-- 1 -->\n    <g style=\"fill:#262626;\" transform=\"translate(155.415339 66.370603)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_24\">\n    <!-- -0.34 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(184.710826 66.370603)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-52\"/>\n    </g>\n   </g>\n   <g id=\"text_25\">\n    <!-- -0.077 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(223.210219 66.370603)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-55\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_26\">\n    <!-- -0.035 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(266.163362 66.370603)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_27\">\n    <!-- 0.082 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(311.641973 66.370603)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-56\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-50\"/>\n    </g>\n   </g>\n   <g id=\"text_28\">\n    <!-- 0.26 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(359.048866 66.370603)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-54\"/>\n    </g>\n   </g>\n   <g id=\"text_29\">\n    <!-- -0.035 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(94.35079 99.696317)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_30\">\n    <!-- -0.34 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(141.757683 99.696317)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-52\"/>\n    </g>\n   </g>\n   <g id=\"text_31\">\n    <!-- 1 -->\n    <g style=\"fill:#262626;\" transform=\"translate(198.368482 99.696317)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_32\">\n    <!-- -0.37 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(227.663969 99.696317)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_33\">\n    <!-- 0.083 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(268.68883 99.696317)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-56\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-51\"/>\n    </g>\n   </g>\n   <g id=\"text_34\">\n    <!-- 0.018 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(311.641973 99.696317)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-56\"/>\n    </g>\n   </g>\n   <g id=\"text_35\">\n    <!-- -0.55 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(356.523397 99.696317)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-53\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_36\">\n    <!-- 0.037 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(96.876259 133.022031)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_37\">\n    <!-- -0.077 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(137.303933 133.022031)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-55\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_38\">\n    <!-- -0.37 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(184.710826 133.022031)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_39\">\n    <!-- 1 -->\n    <g style=\"fill:#262626;\" transform=\"translate(241.321625 133.022031)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_40\">\n    <!-- -0.31 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(270.617112 133.022031)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_41\">\n    <!-- -0.19 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(313.570254 133.022031)scale(0.14 -0.14)\">\n     <defs>\n      <path d=\"M 10.984375 1.515625 \nL 10.984375 10.5 \nQ 14.703125 8.734375 18.5 7.8125 \nQ 22.3125 6.890625 25.984375 6.890625 \nQ 35.75 6.890625 40.890625 13.453125 \nQ 46.046875 20.015625 46.78125 33.40625 \nQ 43.953125 29.203125 39.59375 26.953125 \nQ 35.25 24.703125 29.984375 24.703125 \nQ 19.046875 24.703125 12.671875 31.3125 \nQ 6.296875 37.9375 6.296875 49.421875 \nQ 6.296875 60.640625 12.9375 67.421875 \nQ 19.578125 74.21875 30.609375 74.21875 \nQ 43.265625 74.21875 49.921875 64.515625 \nQ 56.59375 54.828125 56.59375 36.375 \nQ 56.59375 19.140625 48.40625 8.859375 \nQ 40.234375 -1.421875 26.421875 -1.421875 \nQ 22.703125 -1.421875 18.890625 -0.6875 \nQ 15.09375 0.046875 10.984375 1.515625 \nz\nM 30.609375 32.421875 \nQ 37.25 32.421875 41.125 36.953125 \nQ 45.015625 41.5 45.015625 49.421875 \nQ 45.015625 57.28125 41.125 61.84375 \nQ 37.25 66.40625 30.609375 66.40625 \nQ 23.96875 66.40625 20.09375 61.84375 \nQ 16.21875 57.28125 16.21875 49.421875 \nQ 16.21875 41.5 20.09375 36.953125 \nQ 23.96875 32.421875 30.609375 32.421875 \nz\n\" id=\"DejaVuSans-57\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-57\"/>\n    </g>\n   </g>\n   <g id=\"text_42\">\n    <!-- 0.096 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(354.595116 133.022031)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-57\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-54\"/>\n    </g>\n   </g>\n   <g id=\"text_43\">\n    <!-- -0.058 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(94.35079 166.347746)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-53\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-56\"/>\n    </g>\n   </g>\n   <g id=\"text_44\">\n    <!-- -0.035 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(137.303933 166.347746)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_45\">\n    <!-- 0.083 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(182.782545 166.347746)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-56\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-51\"/>\n    </g>\n   </g>\n   <g id=\"text_46\">\n    <!-- -0.31 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(227.663969 166.347746)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-51\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_47\">\n    <!-- 1 -->\n    <g style=\"fill:#262626;\" transform=\"translate(284.274768 166.347746)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_48\">\n    <!-- 0.41 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(316.095723 166.347746)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_49\">\n    <!-- 0.16 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(359.048866 166.347746)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-54\"/>\n    </g>\n   </g>\n   <g id=\"text_50\">\n    <!-- -0.0017 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(89.89704 199.67346)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"258.740234\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"322.363281\" xlink:href=\"#DejaVuSans-55\"/>\n    </g>\n   </g>\n   <g id=\"text_51\">\n    <!-- 0.082 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(139.829402 199.67346)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-56\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-50\"/>\n    </g>\n   </g>\n   <g id=\"text_52\">\n    <!-- 0.018 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(182.782545 199.67346)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-56\"/>\n    </g>\n   </g>\n   <g id=\"text_53\">\n    <!-- -0.19 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(227.663969 199.67346)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-57\"/>\n    </g>\n   </g>\n   <g id=\"text_54\">\n    <!-- 0.41 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(273.14258 199.67346)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_55\">\n    <!-- 1 -->\n    <g style=\"fill:#262626;\" transform=\"translate(327.227911 199.67346)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n   <g id=\"text_56\">\n    <!-- 0.22 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(359.048866 199.67346)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-50\"/>\n    </g>\n   </g>\n   <g id=\"text_57\">\n    <!-- 0.013 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(96.876259 232.999174)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-51\"/>\n    </g>\n   </g>\n   <g id=\"text_58\">\n    <!-- 0.26 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(144.283152 232.999174)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-54\"/>\n    </g>\n   </g>\n   <g id=\"text_59\">\n    <!-- -0.55 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(184.710826 232.999174)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-45\"/>\n     <use x=\"36.083984\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"99.707031\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"131.494141\" xlink:href=\"#DejaVuSans-53\"/>\n     <use x=\"195.117188\" xlink:href=\"#DejaVuSans-53\"/>\n    </g>\n   </g>\n   <g id=\"text_60\">\n    <!-- 0.096 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(225.735688 232.999174)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-57\"/>\n     <use x=\"222.65625\" xlink:href=\"#DejaVuSans-54\"/>\n    </g>\n   </g>\n   <g id=\"text_61\">\n    <!-- 0.16 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(273.14258 232.999174)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-49\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-54\"/>\n    </g>\n   </g>\n   <g id=\"text_62\">\n    <!-- 0.22 -->\n    <g style=\"fill:#ffffff;\" transform=\"translate(316.095723 232.999174)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-48\"/>\n     <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n     <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n     <use x=\"159.033203\" xlink:href=\"#DejaVuSans-50\"/>\n    </g>\n   </g>\n   <g id=\"text_63\">\n    <!-- 1 -->\n    <g style=\"fill:#262626;\" transform=\"translate(370.181054 232.999174)scale(0.14 -0.14)\">\n     <use xlink:href=\"#DejaVuSans-49\"/>\n    </g>\n   </g>\n  </g>\n  <g id=\"axes_2\">\n   <g id=\"patch_3\">\n    <path clip-path=\"url(#pc04995fd63)\" d=\"M 414.903375 245.798906 \nL 414.903375 244.887656 \nL 414.903375 13.430156 \nL 414.903375 12.518906 \nL 426.567375 12.518906 \nL 426.567375 13.430156 \nL 426.567375 244.887656 \nL 426.567375 245.798906 \nz\n\" style=\"fill:#f0f0f0;stroke:#f0f0f0;stroke-linejoin:miter;stroke-width:0.01;\"/>\n   </g>\n   <g id=\"matplotlib.axis_3\"/>\n   <g id=\"matplotlib.axis_4\">\n    <g id=\"ytick_8\">\n     <g id=\"line2d_15\"/>\n     <g id=\"text_64\">\n      <!-- −0.4 -->\n      <g transform=\"translate(430.067375 228.610371)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 10.59375 35.5 \nL 73.1875 35.5 \nL 73.1875 27.203125 \nL 10.59375 27.203125 \nz\n\" id=\"DejaVuSans-8722\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-8722\"/>\n       <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"179.199219\" xlink:href=\"#DejaVuSans-52\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_9\">\n     <g id=\"line2d_16\"/>\n     <g id=\"text_65\">\n      <!-- −0.2 -->\n      <g transform=\"translate(430.067375 198.500006)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-8722\"/>\n       <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"179.199219\" xlink:href=\"#DejaVuSans-50\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_10\">\n     <g id=\"line2d_17\"/>\n     <g id=\"text_66\">\n      <!-- 0.0 -->\n      <g transform=\"translate(430.067375 168.38964)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_11\">\n     <g id=\"line2d_18\"/>\n     <g id=\"text_67\">\n      <!-- 0.2 -->\n      <g transform=\"translate(430.067375 138.279275)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_12\">\n     <g id=\"line2d_19\"/>\n     <g id=\"text_68\">\n      <!-- 0.4 -->\n      <g transform=\"translate(430.067375 108.168909)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_13\">\n     <g id=\"line2d_20\"/>\n     <g id=\"text_69\">\n      <!-- 0.6 -->\n      <g transform=\"translate(430.067375 78.058544)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-54\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_14\">\n     <g id=\"line2d_21\"/>\n     <g id=\"text_70\">\n      <!-- 0.8 -->\n      <g transform=\"translate(430.067375 47.948178)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-56\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_15\">\n     <g id=\"line2d_22\"/>\n     <g id=\"text_71\">\n      <!-- 1.0 -->\n      <g transform=\"translate(430.067375 17.837813)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <image height=\"234\" id=\"image8dbd72c01b\" transform=\"scale(1 -1)translate(0 -234)\" width=\"12\" x=\"415\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAAwAAADqCAYAAACWaKR4AAABV0lEQVR4nOWa6w3DMAiEwdAluv+cbWf4kA5dHf82uhcljZ2s1/sbYHWS3RHRmayEF5w8tIBSCkxJLppSGtj6/xqKtoahhgECFa1vbzkCT9pQtGMv2YnGSXPRaPtjW4NrYGsw7gO3BlsrObC10EuGlMrRVjuEhckn11AXaHgmJfRiGdHF9pv+HmgBdWmBEi6Qa2hakJTSDS5ZUmIQ3XpKX0hpY7ZSStwltejBgx1SGmigBTC5BVsTTrI+tGDwtgsR6nxYAfxzv+KSISU4BQYaOAJtjVIjOLrkSIki4PaGT3ZOKXhrQAR9ATzAskRI+EiZUFIjBEW4gxJFKHjeihEGBWpKeluD3nDobU1sa7HjHMek9TlwW/00DJLGlAxdotfNfpR4AU7aUAO9ONqgdAFCsSNaSw0XIGTKh7Fj0n5ziX94Jg8Oi+ZJ2+WAv4V7ZLcmTlotmp6Txw+NkSxljv5vCwAAAABJRU5ErkJggg==\" y=\"-12\"/>\n   <g id=\"patch_4\">\n    <path d=\"M 414.903375 245.798906 \nL 414.903375 244.887656 \nL 414.903375 13.430156 \nL 414.903375 12.518906 \nL 426.567375 12.518906 \nL 426.567375 13.430156 \nL 426.567375 244.887656 \nL 426.567375 245.798906 \nz\n\" style=\"fill:none;\"/>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p28652a4765\">\n   <rect height=\"233.28\" width=\"300.672\" x=\"95.439375\" y=\"12.518906\"/>\n  </clipPath>\n  <clipPath id=\"pc04995fd63\">\n   <rect height=\"233.28\" width=\"11.664\" x=\"414.903375\" y=\"12.518906\"/>\n  </clipPath>\n </defs>\n</svg>\n",
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdcAAAFVCAYAAAC9/KUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADPQElEQVR4nOyddVRV2fuHH7q7QbEwEROwO8YYxU4cu3XssWvUsb46jq2jjjp2d42NiRLqqKSIdEp3/P5AL1y4ICjq6G8/a521OPu8e+/P2Xdz3rPzyMXExGQjEAgEAoGg1JD/2gIEAoFAIPjeEM5VIBAIBIJSRjhXgUAgEAhKGeFcBQKBQCAoZYRzFQgEAoGglBHOVSAQCASCUkY4V4FAIBAIShnhXAUCgUDwTXL37l369etH9erV0dXVZf/+/R+M8/z5czp16oSpqSnVq1dn5cqVZGeX/nYPwrkKBAKB4JskMTGRGjVqsGLFCtTU1D5oHxcXR/fu3TE2Nub69eusWLGCDRs2sHHjxlLXpljqKQoEAoFA8AVo37497du3B2DcuHEftD969CjJycls2bIFNTU1atSogZeXF5s3b2bChAnIycmVmjbRchUIBALB/wucnZ1p1KiRVCu3TZs2hISE4O/vX6p5iZbrV0Y9PeprSygWf9Rb8LUlFJtkuW9nu2yjrNJ7U/7cBCt8O+Wq8w2V67f0EB7ybFOppVXSZ1+SksEn5xkeHo65ublUmJGRkeRa+fLlPzmP93xLv6tAIBAIvheyMr9Ktvm7ft9PZirNLmEQzlUgEAgEX4PsrC+epbGxMeHh4VJhkZGRQG4LtrQQY64CgUAg+PJkZZXsKAXs7e25f/8+KSkpkrAbN25gZmZGuXLlSiWP9wjnKhAIBIIvTnZ2VokOWSQkJPD06VOePn1KVlYWgYGBPH36lICAAAAWL15M165dJfa9evVCTU2NcePG8eLFC86cOcO6desYN25cqXcLC+cqEAgEgi9PKbRc3dzcaN68Oc2bNyc5OZnly5fTvHlzfvvtNwBCQ0Px8/OT2Ovo6HDy5ElCQkJo1aoVM2bMYPz48UyYMKHUb08uJibm25kC+B0iZguXPmK28OdBzBb+PHxLE19Kc7awWtzrEtkna5cvtby/BN/S7yoQCASC74WvNFv4SyGcq0AgEAi+PF9htvCXRDhXgUAgEHx5SmkG8H8V4VwFAoFA8MUpbAbw94Jwrt8Jj92fsfvAcV54+hAeGcXSOVPp1rndZ8+38ZQe1BrQChUdDULdfLk6fzdRXkFFxinToBotFwzEsLIFCeExPNp6jif7rkvZVO5oR9PpvdCxNCb2TThOq47ic/mxVL6Np/SQipMYHsMW28Jn/TWf3IN6A1qjqqNBkJsPl+bvJsK7aK2WDarRfr4jRpUtiA+P4d7Wc7juvya5Xr2TPY3HdkG/nAnySgpE+4XxcOdFnh53ksq3xZSeUukmhMfwu914mXla/9SW2qM7oW6sy1uvIO4u3keos2ehGvWrlaHpksEY16lEakwCL/Zdx+WPU5LrZg2r0WBmH3QrmaGopkJ8YCQeh27yZNsFiU3XI3Mxb1S9QNrRnoEcaTuryDJqNbkH9fu3Rk1Hg0B3H84Vo1zLN6hGh3mOGFWxID4shjvbzvE4T7nW6dWcHv8bXSDer1WHkJGaDoCcvBytJvekdvcmaBrrkhAew9NT97ix7jhk5Uy+apSvfl4rQf00yFM/n8qon03y1M87+eqnhX1V7EZ3xtimPFqm+lyauo3nx5yk0pj2Zp/M/J/s+YdoryDqje6EhrEuUd5B3F68j+Ai6oBB1TK0XDIY0zqVSIlJ4Nn+6zjnqQPqxro0nzcAo5rl0a1giseJO/wzbbtUGlad7bEd+yO67+pyjF8Ybjsv8TKf7lIjM+PzpPsfQTjXL8CMGTN48eIF58+f/2x5JCUlY1WxPF07tmHOkjWfLZ+82I/9EduRHbk4bTtvfUNoNLk7vffPYmfLGaQnpsiMo1PWiJ57pvPs8G0uTNqChV0V2i4dQlJUPN4XHwFgVs+KLpsmcHftcbwvPaZyB1u6bpnIgR6/EuruK0kryieYw32XSc6zMwt/E2485kcajuzEmenbiPINofmk7gzcP5vNraaTVohW3bJG9N89A/cjtzg1eTNlbavScekQkqLj8HinNTkmgTsbThHpG0xWeiaV29Sly6qRJEXH4XPjiSStSJ9g9vZb+kGtlbo0oPEiR+7M3U3IIy+sf2pL570zONx6JgnBBWeWK2mq8eP+WYQ89OT4jwvQrWhGq7WjSE9O5en2iwCkJ6bw7K8rRHsEkJGchqltFZqvGEpGchrP914F4PKodcgr5T4OFJQV6fPPCnzPPSy0TAGajvmRxiM6cXL6NiJfhdDy5+4M3jeb9a2LKNcyRjj+NQPXI7c4Nnkz5eyq8uOSISRFxfHi0iOJXVpSCutaTJWK+96xAjQb0wX7n9pxctpWwjwDMKlmSY81Y8hIS8f9j9PYvaufl6ZtJ/pd/ey1fxa7iqif2mWN6LFnOv/mqZ9tlg4hOV/9/HHTBO7lqZ9dtkzkYJ76qayhSqRnIM+PO9Hx9zEy89pSP+fl6n2pm9SqQNe/ppMcHU/zRY7cmLeb4Ede1BrUFoc9M9jXZibxMuqAsqYa3ffPIsjZk0M/LkCvkhnt1owiPSkVtz9z6oCCsiLJb+N5vPksNQe0kqkn5W0CzutP89Y3mKyMTCq0qUvbVSNIjorjdZ66XGp85xOairXOdezYsejq6qKrq4uhoSG1a9dm3rx5JCYmfm59/3nGjh1L3759v7YMmje2Z/KYIbRv1Qw5+S+zDKHe8A483HwW74uPiPQK5OKUrShrqFK9W+NC49R2bE1CWAzXF+4l2ieYZwdv8vzYHexGdZLY1B/egTf3X/Bw4xmifYJ5uPEMAQ9eUn94B6m0sjMzSYqIlRzJ0fGF5ms/vAP3tpzF4+IjIrwCOT01R2tNh8K11h/YhviwGC4v3EukTzBuh27w9LgTjUZ1lti8vvcCzysuRPmG8PZNOM5/XSbM4w2WdtWk0srKzCQxIlZyJBWitdbIjngddeLlwZvE+ARzd8FeksJjqDGojUz7yt0bo6imwvWpW3nrGYjfxUe4bzlH7ZEdJTaRz17je+YBb72CiA+IwPvkXQJuPcPUvqrEJjUmkeSIWMlhZlcVRXUVPA7fKrR8ABoN64DTlrO8uPSIcK9ATkzbioqGKrWKKFc7x5xyvbBoL5G+wbgcuoH7cSea5ClXgOxsSIiIlTryUrZ+FTyvueJ5zY2YwEg8r7ricdWFMnWsgJz66fyufkZ5BXLpI+vni2N3sM1XPwM+UD/9bjzhzqojeF94RHaW7CVMeetuUkQsFdvX561vCOVb1uLlMSeeH7zJW59gbi3MqQM2hdSBqt1y6sCVKVuJ8grE5+IjHm85R708dSA+MJJbC//m5TEnUmNlP7cD773g1RUX3vqGEOsfjvuuy0S+DMA8Tz0pVbKzSnZ8YxR7E4mWLVvi6emJu7s78+bNY+fOncyfP/9zavtPk5GR8Vm+Xv+toGNphKaxLv63/5WEZaSmE/jQE4v6lQuNZ1avMq9vP5MKe337KSa1KiCvqACAeT0rqXQBXt96ViBdHUtjRjuvZ+Sdtfy4cTw6lrL3BtUta4SWsR6+efLNSE3njbMHZYrQalGvMq+cpLX63nqKmU2u1vyUb2KNQUUz/J09pML1LI2Z9HADE+78To8NE9AtW1CrvJICRjYVCMhXPgG3n2FqK1unST0rQpw9yUzJbdEF3HqGhqk+WjLyADCwLodp/cqEPHgp8zpA9QGtCLjxhMSQ6EJt9N6Vq4+TdLn6O3tQtohyLVu3slQcAJ/bTzHPV65KqspMvfMH0+5vYODO6ZhaS29P9+axJxUa1sCwkhkARlYWVGxkjdcNd0n9fC2jfpoXoc28XmX8P1A/zepZSaULOfWzqHQ/hJK6ClW6NOT54VsY21QooMH/9jPMCknfrL4Vwc6eZOZp1b+59QxNU320C6kDxaFsE2v0KpkS9NDjw8Yfw1fY/vBLUmznqqKigomJCWXKlKF379707t2b8+fPc/jwYVq1akWZMmWwsrJi8ODBBAcHS+Klp6fzyy+/UK1aNYyNjbG2tmbRokWS62fOnKFx48aYmppSvnx5OnXqJLWx8sWLF2nRogUmJibUqlWLJUuWkJaWJrluY2PD6tWrmTx5MmXLlqVGjRqsX79eSruPjw+dOnXCxMQEW1tbrly5goWFBfv375fYBAcHM2zYMMqVK0e5cuXo06cPvr65XZDLly+nUaNG7N+/nzp16mBsbCyz5Z6Zmcm8efMk6cyaNYvMzO+v+0PDSBeAxEjp1kRiZCzqRjpFxNMhKV+cpIhYFJQUUdPXkqT9oXRD3Hy4NG07x39azeVZO9Ew0mXAiYWo6moWyFPTuHCtmu/uQxaaRjokRuSPE4eCkiLq77QCqGipMfPFTub47KH/rulcXrQX35u53WhB7r6cmbaNg4NXcX7mDjSMdBh6YhFq+bSq6mshr6hAcj6dyRGxqBeiU91YV6Y9UOB3cHRez0ifv+h5fgnP917lRb5xxPfoVDDFvFF1Xh68IfP6ezQLqQMJkbFofahcC8R5V656OeUa9SqYU79s58CotRz7eSMZqemMOLYQ/fImkjhOW87y5OQdJvyzioXee5h4dRXux514tO+qpH4WqGuRsWgUUT/VZWhLlFE/ZaVbVL3/EFW7NUZBWYnXN9yRV1QgKUKWbt1CNMvW8/5+SoKylhpjX+5ggu9uuv41jVsL/8b/5tMSpVFsvvOW60ePuaqqqpKenk5aWhqzZ8+mSpUqREVFsXDhQoYPH87Fizl9/Vu3buX8+fPs3LkTS0tLgoOD8fb2BiAsLIzhw4ezYMECunbtSmJiIo8f504KuHbtGqNGjWL58uU0adKEgIAApk6dSmpqKkuX5o5fbd68mdmzZ/Pzzz/zzz//MHPmTBo2bIi9vT1ZWVk4OjpibGzMP//8Q0pKCrNnzyY1NVUSPykpiS5dumBvb8/58+dRVlZmw4YNODg44OzsjLq6OgD+/v4cO3aM3bt3o6ysjKqqaoFy2bhxI3v37uWPP/7A2tqaP//8k6NHj1KrVq2PLer/BNW7Nabd8mGS8xND/pfzR77Wu5ycHHygQV+gwf9uT0+pngCZ6eaG+eX7hw9x9WHknbVY92pGTFQMnX8bLrl2cOjqwjIuRu9Dvuty75PKDU9NSGF7xzkoa6hSoYk17eY5EhMYyeu7zwGkHC1AoJsPE51+p1avZrzafqlgjjLKpyidBa7J0AhwuucSlDRUMKlrRYM5/YgLiMD7xN0C6VUf0IrEsLf4X3OXCq/l0Jguecp1/7DVheT/4XLNfz13W9ec8ABXHwJcfSTX37h4Me7CchoO/oELi/cCULNLQ+r0aMaxSZvQtTCi9ZSeNJ/gQJNRnTnuuPJ9RjK0FSmt4E8uo37KuucPJ1w4Nfu3wveKCykxCTKvy32oTAupAyXVlJaQwoEOc1HSUKFsE2uazR9IXGAkAe/qcqnyDbZGS8JHOVcXFxeOHTtGixYtGDRokCS8fPnyrF27Fnt7e4KCgrCwsCAgIIBKlSrRuHFj5OTkKFu2LA0aNAAgJCSE9PR0HBwcsLS0BKBGjRqS9P73v/8xceJEHB0dAahQoQKLFi1i9OjRLFmyRFLpW7duzahRowAYPXo027Zt49atW9jb23Pjxg28vb05ceKE5CO5v/32Gz/88IMkn+PHj5Odnc3mzZslaa5btw4rKysuX75M9+7dAUhLS2Pbtm0YGxsXWjZbtmzh559/lsRZuXIl16/LbiF8S/j840qIW25LXkElp+poGOkSn6frUN1Au8BbdF4SIwq2HNQNtclMzyDlbcI7m5gCb+k56cYVmm56UiqRXkHoVTDB+dB1gvJoVVTO1RqXR6uGoXaBVkpeEiIKthY0DHK0Jr/N8xDMzuatfxgAYS/8MbQyp+n4rhLnKktrhHcQ+uVNeZUnPCU6nqyMzAKtDTVD7QKt0/ckhccUaNWqGebET85XXvEBEQBEewSiZqSD7dQeBZyrvJICVXs15eXBmwUmXXlcdSUwz4QyhXflqpmvXDUNtEn4QLnm7zF4X65Jb2U7l+ysbIKevcKggqkk7IfZA7j753n+PfsAZQ1VXlx0xn5QW6p3sCP5bc6YtnoJ62fSZ6qfRWFYwxKT2hW5t+oIyYXVgSJ0J0UUrAPqBjnxS6wpO5vYd3U58sUb9K0ssJvQ9bM41+zs769HLy/F7ha+evUqFhYWmJiY0K5dOxo3bsyqVatwd3enf//+1KxZkzJlytCqVc5MtMDAQAAGDBjAs2fPqF+/PtOnT+fy5ctkvXtjsbGxoWXLljRu3JhBgwaxc+dOybf1AJ48ecKaNWuwsLCQHCNHjiQxMZGwsDCJnbW1tZRWU1NTIiJyHiReXl6YmZlJfX2+Xr16yMvn3vqTJ0/w9/enTJkyknwsLS2JiYmR2vTZ3Ny8SMcaGxtLaGgodnZ2uQUsL0/9+vWLW8z/WdITU4jxD5McUV5BJITHUK5ZTYmNgooSFvZVCXLxLjSdEFdvyjWtKRVWrllNwp76kZWR888W7Oojle57m6LSVVBRQt/KnMTwGNISU3jrHyY5IryDiA9/S8V8Wi3tqhFYRJpBrt5UbCJdtyo2syHkWa5WWcjJy6GgrFSkVoNKZiSEx0iFZ6VnEvHMjzL57r1Ms5qEPpatM8zVBzP7qiioKEnZJ4ZGS5ypTI1ysjVW+MEWVX0tXh66WeBaWmIK0f5hkuN9uVrl+T0V35VrQBHlGuDmTaV85VqpqQ3BHyhX02qWxIe/lZwrqSmT9e4F4L22xOh4srOyi6yfwUVoC3b1xvID9TOkkPpZVLpFYTOgNbFvwnnj9C9Z6ZmEP/PDMl/6ls1qElJI+iEuPpjnqwOWzWqSEBpNXBF1oDjk1OXPtKhEdAvn0LhxY/744w8UFRUxMzNDSUmJxMREevbsScuWLdm2bRtGRkZERUXRsWNHybhonTp1ePr0KdeuXeP27duMHTuWmjVrcurUKRQUFDh58iSPHj3i+vXr/P333yxevJjz589jY2NDVlYWM2fOpFu3bgX0GBoaSv5WUpJ+SOTtQinOpKOsrCxsbGzYtWtXgWt6enqSvzU0NIpVVl+DpKRk3gTmjHVnZ2UTEhaOh5cvOtpamJkW/kLwKbjuvESDCQ5E+wbz9lUoDX92ID0phZen7klsOv6es1bx4pRtADzZd526g9vRaqEjT/Zfx8K2CjV7NefcxNwNwV13Xabf0XnYj++Cz6XHWHWwpWyj6hzsuURi02Juf3yvuhEfHIWagTaNJnVDSU2lwFrC9zjvvETTCd2I8g0m6lUozSZ2Iy0phX9P52p1WJuzZOL01K0AuOy/hu3gdrRf4IjrgeuUsa1C7V7NOfHzRkmcphMcCHLz4e2bcBRVlLBqVQeb7k25tHCvxKbt3AF4XXUlLjgKdQNtmv3cHWU1VZ4ed0I5n86nf16k9bqxhLu/IvSxF9aObdAw0ePFvpw1oPYz+2BcpxLn+i8HwOfUPWwnd6fV2lG4rD+NbgVT6o7rwuN1JyRp1hzSjriACGJ9QwAwa1CN2qM7S5bh5KX6gFYE3XlO/JviPZTv77pE8/HdiPANJsovlBbvyvVpnnLtsSanXE9MyynXR/uu0eCndnRc4Mij/dextK1CnV7NOZanXFtO6kGgmzdRfqGoaKnTcEh7TKqV5ey83P9Rz2tuNBvblZiACMK9AzGzLk/j4R1xP3EHKF797PCufl7KVz9bLnTk6bv6ad2rOefz1c++MurnoTz1U0ldBd1348Ny8nJoWRhgVMOSlJhEqeU0iqrKVO3WGJet53LT33GRH34fS5j7K4Ife2Hzrg48e1cHGs/sg2mdSpx4Vwc8T9+jweTutFszikfrT6Nb0ZT647rwME8dgJwWMuQs3cnOysawhiVZ6RlEe+c8N+wmdCXU3ZfYN+EoKCtRvlVtqvVowq08dblUEd3COairq1OxYkWpMG9vb6Kiopg/fz7ly5cHciYo5UdLS4tu3brRrVs3BgwYQNu2bXn16hVWVlbIyclhb2+Pvb29ZKz05MmT2NjYULt2bby8vArkWxKqVq1KSEgIISEhmJnlzCp0c3OTtJ4BateuzbFjx9DX10dXV/ej89LR0cHU1JTHjx/TokULIMe5u7q6YmJi8oHYn8a/Ht4MmzhTcr5p5z427dyHQ8e2LJs37bPk6bzlHIqqyrRZOgRVbXVC3H05NnCl1BpCbXNDqTixAREcH/w/Wi1wpLZjGxLD3nJ90V7JGkKAYBdvzk3YSJPpvWkypScx/mGcG79Rao2rlpk+P24cj5qeFknRcYS4+nCg20LigqJyx5vycG9rjtYOS4agpq1BkLsv+x1XSK3F1DY3kIoTExDBwSGrab/AkfqObYkPf8ulRXsla1wBlNVV6bhsGNpm+mSkpBHpG8zpqVt5fuZ+brqm+vTYMAF1PS0So+MIcvNhV/eFxAZFYpRPrO/Zh6jqaVH/ZwfUjXWJ9gzkwuDVJATlPJA1THTRKZf7spQWn8y5gStounQIPc/9SmpsEk+2X5CscQWQU5Cn4ex+aJU1JCsjizj/cB6uOMzzv69J5a1laYRFkxpcHV/8L5/c2XoOJVVlflwyJGdzDndf9g6SLlcdi3zlGhjBvqGr6TDfEbuBOeV6YfFeqTWuqtrqdP1tBJpGOqTEJxH6wp9dfZcQ9CS3I/38wj20mdaLH5cMRcNQm/jwGFwO3eDm+pNoAI8+on7GBURwYvD/aFmM+tl0em8aF1I/TWpVpO+RuZLzJtN60WRaL/49epvLeTZvqNqlIUrqKrw4elsS5n32IWq6WthPzKkDUV6BnB68mvj3dcBYFx1L6TpwcuAKWi0dQr9zv5Ial4Tbnxcka1zfM/DSb1LnFdvVIy4ggr+aTAFASUOV1suGovmuLkf7BHNlyja88tTlUuUbbI2WhGJ9cm7s2LFER0dz+PBhqfDIyEisra0ZMWIEI0eOxNPTk4ULF+Lh4cHZs2dp1qwZGzduxNTUFBsbG5SUlNi2bRsHDx7Ew8OD58+fc/PmTdq0aYORkRFPnz5l9OjRrFmzhr59+3Lt2jX69u3LlClT6N69O4qKirx8+RIXFxd+/fVXIKdredSoUUycOFGiq3PnztSoUYPVq1eTlZUlmY28ZMkSUlJSmDNnDm5ubqxfv54BAwaQlJRE8+bNMTY2Zs6cOZQpU4agoCAuXLjAsGHDqFSpEsuXL+fMmTPcv3+/yLJZt24da9euZcOGDdSoUYMdO3Zw4MABatWqJXMTCfHJudJHfHLu8yA+Ofd5+JZ28inNT86peF4pkX1q1fallveX4JM+lm5oaMiWLVs4f/48DRo0YOXKlSxbtkzKRktLi/Xr19OmTRtatGjBs2fPOHr0KOrq6mhra/Pw4UP69u1L/fr1mTdvHjNmzJBsytCmTRuOHDnCnTt3aNOmDW3atOH333+nTJkyxb9BeXn27dtHamoqbdq0YezYsUybNg05OTnJbF91dXUuXLhA+fLlGTJkCPb29owdO5aYmJgSt2QnTJjAwIEDmThxIm3atCErK4vevXuXKA2BQCD47vnO17n+v/xY+rNnz2jWrBk3b96kTp06X1WLaLmWPqLl+nkQLdfPw//bluuLCx82ykNqjU4fNvoP8S39rh/N2bNn0dDQoGLFirx584a5c+dSs2ZNateu/bWlCQQCwf9PvsHWaEn4f+FcExISWLRoEUFBQejq6tK0aVN+++03yZpWgUAgEHxhvnPn+kljrt8K/fv3x8XFhdDQUDw8PNixY0eR61UFAoFA8HnJzs4s0VEYO3bsoFatWpiYmNCiRQvu3btXqC3k7PzXrl07ypQpQ8WKFenfvz8+Pj5FxvkY/l84V4FAIBD8xyiFCU0nTpxg1qxZTJs2jdu3b2Nvb0/v3r0JCAiQaf/69WsGDBhAo0aNuH37NqdOnSIlJeWzTDoVzlUgEAgEX55S2KFp06ZNDBgwgMGDB1O1alVWr16NiYmJzA2BIGc3vvT0dBYuXEjFihWpVasWU6ZMwc/Pj6io0p1cKpyrQCAQCL48n9hyTUtLw93dndatW0uFt27dmocPH8rMsk6dOigpKbF3714yMzOJj4/n4MGD1KtXDwMDA5lxPhbhXAUCgUDw5fnElmtUVBSZmZkYGUl/s9bIyEjqs6V5KVeuHCdPnmT58uUYGxtjaWnJixcvCmyQVBoI5yoQCASCL08pbSKRf9VHdnZ2oStBwsLCmDhxIv369eP69eucO3cOTU1NhgwZIrUlbmnw/2IpjkAgEAj+Y2RmfFJ0AwMDFBQUCrRSIyMjC7Rm3/Pnn3+irq4u2T4XYPv27VhbW/Pw4UMaNWr0SZryIpzrV+Zb2flokuuvHzb6j9DIZvDXllBs2qmU/doSio169rezLtz0057bX5RaKoV/X/a75hNbisrKytSpU4cbN25IfTntxo0bdO3aVWac5ORkFBQUpMLen5d2y1V0CwsEAoHgy1MKs4XHjx/PgQMH2Lt3L56ensycOZPQ0FCGDh0KwOLFi6Ucbfv27Xny5AkrVqzA19cXd3d3xo8fT5kyZUp9K1zRchUIBALBl6cUWoo9evQgOjqa1atXExYWRvXq1Tly5AiWljnfrg0NDcXPz09i36JFC3bs2MEff/zBhg0bUFVVxdbWlmPHjpX697qFcxUIBALBl6eUvuc6YsQIRowYIfPali1bCoT17NmTnj17lkreRSGcq0AgEAi+PN/53sLCuQoEAoHgy1NKLdf/KsK5CgQCgeDLI1quAoFAIBCUMsK5CgQCgUBQymRnf20FnxXhXAUCgUDw5cn4hnb6+AiEcxUIBALBl0dMaBIIBAKBoJQRY67fL507d6ZGjRqsXr36s+ZjYWHBqlWrGDhwYLHsG0/pQa0BrVDR0SDUzZer83cT5RVUZJwyDarRcsFADCtbkBAew6Ot53iy77qUTeWOdjSd3gsdS2Ni34TjtOooPpcfS+XbeEoPqTiJ4TFssZ1QzDstHo/dn7H7wHFeePoQHhnF0jlT6da5XanmUVxGTRtKd8euaOlo8dztBStnr+WV1+tC7es1qsP42aMoV8kSVTVVQoNCObX/HPu2HpJp/0O3Nizbsginf+4x5aeZxdbVZnJP7Pu3Rk1HgwB3H07P/4tw76LrQIUG1eg8bxDGVSyID4vh1razOO+/Jrk+8tA8KjasUSBemFcg69r/AsAvd/5Ar0zBTc89rrtxdOj/ZObbfHIP6g1ojaqOBkFuPlyav5uID2i1bFCN9vMdMapsQXx4DPe2nsM1j9bqnexpPLYL+uVMkFdSINovjIc7L/L0uJNUvi2mSG8GkBAew+9242XmWXlwW2qM7YSasS4xXkG4LNhHhLNnoRp1q5XBdtlgDOpUIi0mAe991/n391NSNuW7N6L6uB/RrmhKenwyoU7Pcf31ACkROfsFVxrQkoq9m6FTxQI5eTmi//Xn6epjRDh7FVk++dF37ITRqB4oGuuR6vWG4CV/kvTohUxbjQY1MRzugFrtKihoaZDqH0zUrjO8PXpVyk5OSRGjCX3R694KRWN9MiJjiNxxkqjdZ0uk7aMRY66fl8jISJYvX86VK1cICwtDR0eH6tWrM2XKFFq1avVZ8963bx+Kil+9CKSwH/sjtiM7cnHadt76htBocnd675/FzpYzSE9MkRlHp6wRPfdM59nh21yYtAULuyq0XTqEpKh4vC8+AsCsnhVdNk3g7trjeF96TOUOtnTdMpEDPX4l1N1XklaUTzCH+y6TnGdnlv7bZVJSMlYVy9O1YxvmLFlT6ukXl8HjBzBwTD8WT/4Nf583jJg6hE2Hf6dn0wEkJSbLjJOUmMThncfxeelLSnIqte1tmLNqOinJKRzbc0rK1sLSjJ/nj8P1gXuJdDUf04VmIzpxdPpWIl+F0PrnHgzfN4c1raeRVkgd0CtjxJC/fuHxkVscnryJ8nZVcVgylMSoOJ5fyqkD+0b/joJybn1XVFZi0qUVPDv/QBK2qes85BRytxzXMtZlwtllUjZ5aTzmRxqO7MSZ6duI8g2h+aTuDNw/m82tpheqVbesEf13z8D9yC1OTd5MWduqdFw6hKToODze1dfkmATubDhFpG8wWemZVG5Tly6rRpIUHYfPjSeStCJ9gtnbb6nkvLD6Wq5rA2x/dcR59m4inL2oMqQtrfbP4FzLmSQFRRWwV9RUo/WhWYQ/8ORSpwVoVzKj0bpRZCSl4rHtIgBGdpVptH4sbr8eIOCSC6pG2tgvH0qTjeO41nc5ACaNq+N/5gERj7zISE6j+sgOtD7wCxfazSXeL0ym1vzodG6K+YKRBC3YQtKjF+gP6kT5vxbh3X486cERBezV61cnxdOfiG0nSA+PRqt5PSx+m0BWajqxZ25J7Mr+MQMlc0OC5mwk1S8YRSNd5FWUi6WpVPjOW65ffeP+QYMG4eLiwsaNG3n8+DGHDx+mXbt2REdHf3SaaWlpxbLT09NDS0vro/P5HNQb3oGHm8/iffERkV6BXJyyFWUNVap3a1xonNqOrUkIi+H6wr1E+wTz7OBNnh+7g92oThKb+sM78Ob+Cx5uPEO0TzAPN54h4MFL6g/vIJVWdmYmSRGxkiM5Or7U77F5Y3smjxlC+1bNkJP/el9a6T+yD3s27uP6+Vv4evqxaNIy1DXV6dCj8Fa0x1Mvrpy+xiuv1wQHhHDx+BXu33SmboPaUnYKigos27KIzSv+JMg/pES6mgzrwM0tZ3h+6RFhXoEcnbYFFQ1V6jgUXgcaOLYhLiyGs4v2EOEbzKNDN3A97kTzUT9KbJJjE0mIiJUc5W2roqyuyuMjNyU2idHxUjZVW9YhNSGZZ+cfyszXfngH7m05i8fFR0R4BXJ6ak59rVmE1voD2xAfFsPlhXuJ9AnG7dANnh53otGozhKb1/de4HnFhSjfEN6+Ccf5r8uEebzB0q6aVFpZmZkkRsRKjqRC6mu1UR15dcQJ3wM3ifMJ5vG8vSSHxVDlpzYy7Sv0aIyimgr3J28l1jOQgAuPeLHpHNVHdZTYGNavTHJINB5/XiIxIIIoV188d13BoF4lic29CVvw+usf3v7rT7xvCM6z/iI9IQWzVrUKLZ/8GI7oxtvj13h76AqpvoGELNpORvhb9Ad2lGkfsfkoYWv2keTykvSAMKL3XyT28n10OuT+JprN6qLZpDavhy4m4Y476UHhJLt7kfjw32Lr+mRK6Xuu/1W+qnONiYnh/v37LFq0iBYtWmBpaUm9evWYOHGiZO9HGxsbNmzYIBWvc+fOzJgxQ3JuY2PD8uXLGT9+PJaWlowcOZJ27doxd+5cqXhxcXGYmppy9uzZAuksXryYFi1aFNDYvn17Zs7M7c7bt28fDRo0wMTEhPr167Np0yapTxW9evWKzp07Y2Jigq2tLZcuXSp2eehYGqFprIv/7dwKnpGaTuBDTyzqVy40nlm9yry+/Uwq7PXtp5jUqoC8Ys7nlMzrWUmlC/D61rMC6epYGjPaeT0j76zlx43j0bGU/V3Ebx0LSzMMTQx4cPORJCw1JQ23B0+oZVuz2OlUrVmZWrY1C7ROx88aRXBACOePFv/3B9Ara4y2sR4+Trm/Z0ZqOn7OHpSrX6XQeJZ1K+Pt9FQqzOv2UyxscutAfuz6t8LrpjuxIYW/yNr1bYX7ybukpxR8YdUta4SWsR6+t6W1vnH2oEwR9dWiXmVeOUnXV99bTzErQmv5JtYYVDTD39lDKlzP0phJDzcw4c7v9NgwAd2yBeurvJIC+rUqEHJLOs/Q288wtJWt07C+FeEPPclMSZeEBd98hrqZPhrv8oh45IWqsS4W7eoCoKKvSTmHhgRfeyIzTQB5ZUUUVJRIi0kq1CYvckqKqNW0It7JTSo84Y4b6vWrFysNAAVNNTLjEiTn2u0akvzUG8PhDlS79xdVrm/DbOEo5NVVi53mJ1MKX8X5L/NV+0Q1NTXR1NTkwoULNGzYEFXVj/9hN2/ezPTp07l58ybZ2dlcv36dtWvXsmTJEuTlc94hzpw5g6qqKj/88EOB+H379uX333/Hy8uLKlVyHmKvX7/G2dmZFStWALBnzx5+++03Vq1aRe3atXn58iWTJk1CSUmJUaNGkZWVhaOjIzo6Oly5coXk5GRmzZpFampqse5Bw0gXgMRI6e87JkbGommqV0Q8Hd7ckXacSRGxKCgpoqavRWJ4DBpGujLTVTfSkZyHuPlwadp2onyCUTfUptHEbgw4sZC/2s4qlv5vCQNjAwCiIqUdS3RENEZmH36hOO9yHD0DXRQUFfhzzW6O7z0tudaghR3tHFozoO3QEuvSevd7xOf7rRIiY9E21S8ini4+d6XrQEJkTh3Q0NMiPiJG6pphBVMqNqzB3pGFd8tXbmaDvqUxjw7fkHld01gXkF1ftUwK16pppINfvvqaGBmHgpIi6vpaJITnaFXRUmPyw40oKCuSnZnFxQW78b2Z67iC3H05M20bkb7BaBho03RiN4aeWMTWdjMhIlFip6KvhbyigmQc9D3JEbGYNpP9IqVmrEtSvpeOlHf3qWasQ2JABJEuPtwdt4kmG8ehoKqEvJIiIbeecX/y1kLvvfbM3mQkphJ4xbVQm7wo6Gkjp6hARmSMVHhGRAyaTWrLjpQPrdZ2aDaujW/vXyRhypYmqNvVICstHf9xy1HQ1sB80WiUTPR5M25FsdL9VLKzxJjr58tcUZFNmzYxadIk9uzZQ61atWjQoAHdunXD1ta2RGk1btyYSZMmSc719PSYM2cOTk5Okhbp0aNH6datG8rKBccVqlWrho2NDUeOHGHevHkSeysrK+rVqwfA6tWrWbx4MQ4ODgCUL18ePz8/du7cyahRo7h58yYeHh48efKEsmVzPoK9fPlyOnaU3X2jpKTEzy93SM5PDHk3YSTfQL+cnBx8oB4WmBsgJ/cuPLtQo5x0c8P8bkq3fEJcfRh5Zy3WvZoVnfk3QIce7ZizarrkfPKgd70RMsotuxgTLUZ2m4Cahho29a2ZOHcMwQEhXDh2GR19HRatm8O8cYuJj034YDp1HJrQ7bfhkvM9w1a905VPQ77fSiYyouQEF4xn1681cWFv8bzuVuBaXpsAd19CXvgDULNbYzrn0Xpw6GrZWilOGeYX+z6p3PDUhBS2d5yDsoYqFZpY026eIzGBkby++xxAytECBLr5MNHpd2r1akbEloI9BgWLtGid+a/J5QvXrmyO7ZJBPFt3ipCbT1Ez1qXu/P7YrxzG/UnbCqRXdfgPVHZszbW+y8lIkD2mX4SYfOKLNx9IvX51yq6bTvDi7SQ/8c69IC8P2dkETP4fWfE5rejghduosPdXFA11Czjzz8I32NVbEr76bB4HBwd++OEH7t+/j7OzM9euXWPjxo3Mnz+fadOmFTudunXrSp3r6+vTunVrjhw5QosWLQgNDcXJyUmqizc/ffr0YefOnVLOtU+fPkDOxKvAwECmTJkipSsjI0Pyz+bp6Ym5ubnEsQLY2tpKWs75SU9P58CPv0rOFVRyfg4NI13i87w1qxtok5SvdZCXxIhYNPK0QAHUDbXJTM8g5W3CO5sYSctYOt24QtNNT0ol0isIvQomhdp8K9y+fId/XXNnVyorKwFgYKRPWHC4JFzfUI/oiA+P9wcH5Iyj+nq8wsBIj1HThnLh2GWsqlbAyNSQTUd+l9i+//0fBNygb8uf8PcNkFx7cdWFAHcfyfn7CUdaRrpS3bWaBtokFFEH4iNi0MxXBzQMdMhMzyDprbSTV1BSoF7PZjw6dIOsQiYAaRhoU71dfc4s+EsS5vWPK0FuuZPfFJVz62tcHq0ahtoFWrN5SYiILVAXNQxy6mtyXq3Z2bz1z5n0E/bCH0Mrc5qO7ypxrvlJT0olwjsI/fKm5J3mkxodT1ZGJmrG0uWjaqhdoDX7nuTwGNTyaVQxzImfEpHzP1NzYlei3F/xcst5AGJeBpCRnEr7Uwt4svIoScG5ZVJ1+A/UntmLG46riXJ/JTNPWWS+jSM7IxNFI+meq+I4QHXbGpTftZCw3/cTvf+i1LWM8GjSQ6MkjhUg1SenXiqZG30Z5/oNdvWWhK8+oQlAVVWVVq1aMXPmTK5cucKgQYNYsWIFaWlpyMvLF3iDzJCxs4esD9327duXs2fPkpKSwrFjx7CwsKBRo0aF6ujduzdv3rzB2dkZd3d3vLy8JM71/bjq2rVrcXJykhz379/nwYOcmZTFafHkJ8Y/THJEeQWREB5DuTxdVQoqSljYVyXIxbvQNEJcvSnXVLp7q1yzmoQ99SMrIxOAYFcfqXTf2xSVroKKEvpW5iS+66b7lklKTCbwdZDkeOX1msiwKBq0sJPYKKsoU6dBLZ4+LtmkDjk5eZTeOevn7h70bfkTA9sOkxy3r9zF7eFTBrYdRtAb6clNaYkpRPmHSY5w7yDiwt9i1dRGYqOookR5u6r4uxS+fOONmzdWTaR/38pNbQh6llsH3lOjvS3q+lo8Onyz0PTq92pOZlo6T87el9L61j9MckR4BxEf/paK+eqrpV01AouoV0Gu3lRsYi0VVrGZDSEytOZFTl4OhXflLAsFFSUMKplJupXfk5WeSfRTP0ybS5ePabOaRD6WrTPSxQfjBlWRV8nNz6x5TZJCokkMyHHdCmrKBWYnS87lcifqVRvVkdqzenNz0P9KvAQnOz2D5H990GpaRypcs2kdklxeFhpP3d6a8n8tJHz9QaL+OlPgeqLLS5RMDKTGWJUrmAOQFhRewP6zkJFZsuMb4z/hXPNTtWpVMjIySElJwdDQkNDQUMm1lJQUvLyKV0E7dcqZLXv58mVJK1ROrvDZqaampjRv3pyjR49y9OhRGjRoQPny5QEwNjbG3NwcPz8/KlasWOCAnK7l4OBgAgMDJWm6uLhITXj6EK47L2E/rguVO9hiWKUMHdeMIj0phZen7klsOv4+mo6/j5acP9l3HS0zPVotdETfyhybfi2p2as5j7ZfyE1312UsG9fAfnwX9CuZYT++C2UbVcdlZ273WYu5/SnToBo6ZY0wrVOJrlt/RklNhefHctcWlgZJScl4ePni4eVLdlY2IWHheHj5EhL6hf6p33HwzyMMnjCQVp2aU6lqBRatm0NyYjKXTvwjsVm8fi6L1+dOjOs7rCdN2zambIUylK1QBof+nXEc24+Lx68AkJKcgq+nn9QRH5tAUkISvp5+ZKR/eMu3u7su0WJsF6x/sMOkShl6/W8MaUmpuJ/OrQO914yl95qxkvOH+66hY6bPjwsGYVTJHNu+LanXqzm3t58rkL59/zb43n3O24DCy9uubyuenL1f6HKa9zjvvESTsV2p1sEWoyplcPjfaNKSUvg3j1aHtWNwWDtGcu6y/xpaZvq0X+CIoZU5dfq1pHav5tzffl5i03SCAxWaWKNb1ghDK3MajuyETfemPDt5V2LTdu4ALBtUQ7esEeZ1KtFryySU1VSl1sK+x2P7RSr2aU6lAS3RtjKn/q+DUDPVw3tvztraOrP70ObwbIn965P3yEhOpdG6UehULUPZjrZYT+jCy+25LcCgf9wo80M9Kv/UBk1LI4zsKmO75CeinvpJlvdUH9uZOnP68mDqn8S9CkXVSAdVIx2UtNSKLNe8RO44hW7PNuj1bY9KpTKYLRiJorE+0QdytJjM+IkK+3KXI2k0qEmFvxYRfeASMaduomioi6KhLgr62hKb2NO3yHgbR5nVk1CpbIl6/eqYLxhF7IU7ZEYV3utQqnzns4W/ardwdHQ0gwcPxtHREWtrazQ1NXF3d2f9+vW0aNECbW1tmjdvzr59++jYsSOGhoasWbNGZstVFqqqqvz444+sXr2af//9l+3bt38wTp8+fZg/fz7KyspMnz5d6tqsWbP45Zdf0NHRoX379qSnp/PkyRNCQkKYOnUqLVu2pEqVKowZM4bffvuNlJQU5syZU6K1tM5bzqGoqkybpUNQ1VYnxN2XYwNXSq1x1TY3lIoTGxDB8cH/o9UCR2o7tiEx7C3XF+2VrHEFCHbx5tyEjTSZ3psmU3oS4x/GufEbpda4apnp8+PG8ajpaZEUHUeIqw8Hui0kTsY6wE/hXw9vhk3M7Z7ftHMfm3buw6FjW5bNK/5QwKeyZ9MBVFRVmPnbVLR0NPnX7SUT+k2VWuNqaiHdJS6vIM/EeWMwL2tKZkYmgf7BbFy2VWpC06dye+tZlFSV6bpkyLtNJHzZNWi5lKPTtTCQivM2MILdQ1fRef4gGgxsS1z4W84u3iNZ4/oevbLGVGxcg0MTpWfg56VioxoYVjTj8JTNH9R6b2tOfe2wZAhq2hoEufuy33GFlFZtc2mtMQERHByymvYLHKnv2Jb48LdcWrRXssYVQFldlY7LhqFtpk9GShqRvsGcnrqV52dyW9Lapvr02DABdT0tEqPjCHLzYVf3hcQGRWKA9Eu0/5mHKOtpUXOSQ84mEp6B3HRcTeK7uq1qrItmeWOJfXp8Mtf7rcDutyF0vPgrabFJvNx2QbLGFeDVEScUNVWpMrQd9RYOID0umbB7L3BdmruhSJUhbVFQVqTZtolSenwP3+bBlA8/jwBiz99BQU8b4wl9UDTSJ9XLn9fDFpMelNOCVjLWR7mcqcRer1db5NVVMRrVA6NRuZvCpAWG4dlsBABZSSn4DZqP+aLRWJ1eS2ZsAnH/PCB05Z5iaSoVvvNNJORiYmK+2h2mpqaycuVKbty4watXr0hLS8PMzIwOHTowY8YM9PT0iIuLY8qUKfzzzz9oaGgwbdo0Tp48KbWzko2NDaNGjWLixIkF8rh16xYODg7Url2bW7duSV2TtUNTQkICVapUIT09HU9PT/T1pWc9Hjt2jPXr1+Pp6YmqqirVq1dn5MiRkqVDPj4+/Pzzzzx+/JgyZcqwdOlSRo4cWegOTX/ayN5N5r/GJNdfP2z0H6GRzeCvLaHYtFMp+2Gj/wjq2V9vTXJJqZj+7WitpfKFWoqlgKX7vlJLS2nn9A8b5SF9uOwdwv6rfFXnKhDO9XMgnOvnQTjXz8P/W+f6Z8l6qdILWTa2Y8cO1q9fT1hYGNWqVWP58uU0blz4JibZ2dls2bKFv/76C39/f/T09Ojfvz+LFi0qkZ4P8dVnCwsEAoHg/yGlMFv4xIkTzJo1izVr1tCwYUN27NhB7969efDggdSqjbzMnTuXy5cv8+uvv2JtbU1sbCxhYcXbirIkCOcqEAgEgi9PKWwisWnTJgYMGMDgwTm9VatXr+batWvs2rWLhQsXFrD39vZm+/bt3L17l6pVq35y/kXxn5wtLBAIBILvm+ysrBId+UlLS8Pd3Z3WrVtLhbdu3ZqHD2XvhX3hwgXKly/P1atXqV27NjY2NowZM4aIiIIfQPhUhHMVCAQCwZcnK7tkRz6ioqLIzMzEyEh6u1IjIyPCw2UvM3v9+jUBAQGcOHGCzZs3s23bNry9venXr1+JlkwWB9EtLBAIBIIvTynt0JR/74Ls7OxC9zPIysoiNTWVbdu2YWVlBcC2bduwtbXF1dW1xNvuFoVouQoEAoHgy/OJOzQZGBigoKBQoJUaGRlZoDX7HhMTExQVFSWOFaBSpUooKipKbf5TGgjnKhAIBIIvzyd2CysrK1OnTh1u3JD+atONGzdo0KCBzCwbNmxIRkYGfn5+krDXr1+TkZFR6Ozij0U4V4FAIBB8eUrhe67jx4/nwIED7N27F09PT2bOnEloaChDh+Z87nHx4sV07dpVYt+yZUtq167N+PHjefLkCU+ePGH8+PHY2toW+PjLpyLGXAUCgUDw5SmFpTg9evQgOjqa1atXExYWRvXq1Tly5AiWlpYAhIaGSrVS5eXlOXz4MDNnzqRz586Sj8YsW7as0K+XfSxih6avzPpa4762hGJxOu3N15ZQbO4/+4L7o34ida0HfG0JxWa2gtWHjf4jRCt8bQXFZ0qY7I/R/xeJinjxYaNiorBiWInsM2ftKrW8vwSi5SoQCASCL08ptFz/ywjnKhAIBIIvj3CuAoFAIBCUMqW0zvW/inCuAoFAIPjyiJarQCAQCASlS7ZwrgKBQCAQlDLCuQoEAoFAUMrI2NLwe0I4V4FAIBB8eUTLVSAQCASC0iU7WzhXgUAgEAhKF9FyFQgEAoGglBHOVfClaT65B/UGtEZVR4MgNx8uzd9NhHdQkXEsG1Sj/XxHjCpbEB8ew72t53Ddf01yvXonexqP7YJ+ORPklRSI9gvj4c6LPD3uJJVviyk9pdJNCI/hd7vxJdI/atpQujt2RUtHi+duL1g5ey2vvF4Xal+vUR3Gzx5FuUqWqKqpEhoUyqn959i39ZBM+x+6tWHZlkU4/XOPKT/NLJG2kvLY/Rm7DxznhacP4ZFRLJ0zlW6d233WPAtj3PQR9BrkgLaOFs9cX7B09mp8Pf0KtbdtVJfJc8dSvlI5VNVUCA4M5cT+M+zeckBi89eJzdg1qVcgro/HK7q1+PC+x5UHt6XG2E6oGesS4xWEy4J9RDh7FmqvW60MtssGY1CnEmkxCXjvu86/v5+SsinfvRHVx/2IdkVT0uOTCXV6juuvB0iJiAXA8kd7aoz/Ea3yOXU5zi8Mj+2X8DvqJCPHXGx+akvd0Z3QMNYl2isIp8X7CC5Cq0G1MrRYMhiTOpVIiUng333XefRHrlZ1Y12azh+Acc3y6FQwxfPEHa5O3V4gndrDfsBmUBu0yhiS8jaBV1dcuPfbIdKTUovUK4sF86cyYvhA9PR0cHZ2Y+Kkubx44VWofYvmjbh29ViBcGub5nh6+gLw06A+7Nr5ewEbDa2KpKaWXGNxEUtx/h+wfPlyzpw5w/3797+2FBqP+ZGGIztxZvo2onxDaD6pOwP3z2Zzq+mkJabIjKNb1oj+u2fgfuQWpyZvpqxtVTouHUJSdBweFx8BkByTwJ0Np4j0DSYrPZPKberSZdVIkqLj8LnxRJJWpE8we/stlZxnZ5ZsF5XB4wcwcEw/Fk/+DX+fN4yYOoRNh3+nZ9MBJCUmy4yTlJjE4Z3H8XnpS0pyKrXtbZizajopySkc23NKytbC0oyf54/D9YF7iXR9LElJyVhVLE/Xjm2Ys2TNF8lTFsMmDGLw2P7M/Xkpr339GTN1GH8eWc+PjfuSlJgkM05SYhL7dxzB66UvKckp1LWrzYL/zSQ5OZXDu48DMGnYLJSUch8DyirKnLy5n8tnrslMMy/lujbA9ldHnGfvJsLZiypD2tJq/wzOtZxJUlBUAXtFTTVaH5pF+ANPLnVagHYlMxqtG0VGUioe2y4CYGRXmUbrx+L26wECLrmgaqSN/fKhNNk4jmt9lwOQ+jaBf/84TZxPTl22aFuXhmtGkBoVR/D1JwXyBajcpQHNFjlya+5ugh95YfNTW7rsncH+1jNJCC6oVUlTDYf9swh+6MnhHxegV9GMtmtHkZGcitv2HK0KyoqkRMfzePNZag5oJTPfKt0a0WROP679soNgZ090LI1pvXoECipKXJ+x44NlnJcZ08cxZfJoho2YgpeXL/PmTuHShYPUqNmchITEIuPa1G5JdHSM5DwiQvqeExOTqFKtsVTY53SswHffcv1uvuc6duxYdHV10dXVxdDQkNq1azNv3jwSE4uudP817Id34N6Ws3hcfESEVyCnp25FWUOVmg6NC41Tf2Ab4sNiuLxwL5E+wbgdusHT4040GtVZYvP63gs8r7gQ5RvC2zfhOP91mTCPN1jaVZNKKyszk8SIWMmRFB1fIv39R/Zhz8Z9XD9/C19PPxZNWoa6pjodehTe2vN46sWV09d45fWa4IAQLh6/wv2bztRtUFvKTkFRgWVbFrF5xZ8E+YeUSNfH0ryxPZPHDKF9q2bIyct9kTxlMWhUX3Zu+Jur52/g4/GKuT8vQUNTnc492hca58VTTy6euoqvpx9Bb0I4d/wS9248pH7D3HKNi4kjKiJactRrUBs1dVVOHjz7QU3VRnXk1REnfA/cJM4nmMfz9pIcFkOVn9rItK/QozGKaircn7yVWM9AAi484sWmc1Qf1VFiY1i/Mskh0Xj8eYnEgAiiXH3x3HUFg3qVJDZhd18QeMmFOJ8QEvzD8dx5mZiXARg3qFqo1jojO+Jx1InnB2/y1ieY2wv2khQeg80g2Vqrdm+MkpoK/0zdSrRnIL4XH+Gy5Rx1RuZqjQ+M5PbCv/E46kRKjOznjFn9yoS6+eB54i7xgZEE3nuB5/E7mNatJNO+KH6eOIJVqzdx8uQFnj/3ZOiwyWhpadK/X/cPxg0PjyQsLEJyZGVJvzRnZ2dLXQ8LiyixvhKTVcLjG+O7ca6Q8yFcT09P3N3dmTdvHjt37mT+/PlfW1ax0S1rhJaxHr63n0nCMlLTeePsQZn6lQuNZ1GvMq+cnkmF+d56iplNBeQVZX97q3wTawwqmuHv7CEVrmdpzKSHG5hw53d6bJiAblmjYuu3sDTD0MSABzcfScJSU9Jwe/CEWrY1i51O1ZqVqWVbs0DrdPysUQQHhHD+6KVip/U9UKacOUYmhty7+VASlpqSist9d+rY2RQ7nWo1q1DHzobH99wKtek10IE71+8TGhxeZFrySgro16pAyC3pehd6+xmGtrLrqmF9K8IfepKZki4JC775DHUzfTTe1bOIR16oGuti0S7nw9Uq+pqUc2hI8DXZLVIAk6bWaFcyJfyBh8zr8koKGNtU4M1taa1vbj/DrBCtZvWsCHaW1vrm1jM0TfXRLsH/RPAjLwxrlMPknTPVNDegQrt6vC6khV0YFSpYYmZmwj//3JKEpaSk4OT0kEaNbD8Y/+H9iwT4u3Ll0mFatij4oq6mpoqv90Nev3rM6ZN7qFPHukT6PobsrOwSHd8a31W3sIqKCiYmJgD07t0bJycnzp8/z9q1a/Hy8mLBggXcu3ePzMxMatSowbp167C2LliJXF1dWbJkCU+ePCE9PR1ra2t+/fVX7O3tJTZ//fUXGzduJDAwEE1NTWrXrs2RI0dQVFTk+fPnzJ49Gzc3N7KzsylXrhzLly+nefPmRerXNNYFIDEyVio8MTIWLRP9wuMZ6eB35998ceJQUFJEXV+LhPCYnPLRUmPyw40oKCuSnZnFxQW78b2Z+08e5O7LmWnbiPQNRsNAm6YTuzH0xCK2tpsJRT9rATAwNgAgKjJaKjw6Ihojsw8/kM67HEfPQBcFRQX+XLOb43tPS641aGFHO4fWDGg79MNCvjMMjXLKNTJCulyjIqMxNv1wuV51O4P+u3Ld8r+dHNl7UqZduYplsWtSj4mDZ3wwTRV9LeQVFSTjoO9JjojFtJnsFyk1Y12SQqTvIeVdXVcz1iExIIJIFx/ujttEk43jUFBVQl5JkZBbz7g/eatUPCUtNbq7bpDU5Udz9xB846nsfN9pTcr3f5UUEUvZprK1qhvrkpBPa9K7e1U30iEuoHgtO+8zD1DV06TnsfkgBwpKingcc+Leb7LnExSGqYkxAGHh0vmGhUdgYW5aaLyQ0HDGjZ/F48fuKCsrM3BgT65cPkybtr1wupPzsubl5cuIUdN4+vQFWpoaTJw4gts3T1PPth0+PoWP6X8y36DDLAnflXPNj6qqKunp6YSEhNChQwcaNGjAyZMn0dHRwcXFhcxM2TuExMfH07dvX1asWIGcnBx//vknvXv3xtXVFQMDA9zc3Jg+fTpbtmyhYcOGxMbGcvv2bUn8kSNHUrNmTa5duyZxtqqqqgXyUVJSYuaLnZLzg0NX5/xRYP2XXDHWhOW7Lvc+qdzw1IQUtnecg7KGKhWaWNNuniMxgZG8vvscQMrRAgS6+TDR6Xdq9WrGoc0FP5LcoUc75qyaLjmfPGimTCnIFUc/jOw2ATUNNWzqWzNx7hiCA0K4cOwyOvo6LFo3h3njFhMfm/DBdL51Ovf8gYWrcydqjRs4LeePj6oXMNhhNOoa6tSqX5Op88YR9CaYs8cKtv57OToQHhrB7X/uFVtr/uzlPvBb578mly9cu7I5tksG8WzdKUJuPkXNWJe68/tjv3IY9ydtk8RLT0jhQru5KGmoYNLUmnoLB5IQEEnYnedFiC2otWCZFqFVxv/UhzBvWA27n7txc+5uwtx90ClvSvNFjjSY1pOHa44XGq9//+5s2bRSct7V4ad3eRe8h6L0eHn54uXlKzl/8NCF8uXKMHXqGIlzffDQhQcPXSQ29+4/xuXxFcaPG8qUqQuKfa8lJTujZM716w3KfBzfrXN1cXHh2LFjtGjRgh07dqCurs6ePXtQVlYGwMrKqtC4LVq0kDpftWoVZ86c4erVq/Tt25eAgAA0NDTo2LEjWlpaANjY5HbPBQQEMGHCBKpUqQJAxYoVZeaTnp7Ori6LJeeKyjk/h4aRLnF53po1DLULtGbzkhARi4aRrlSYhoE2mekZJL/N44yys3nrHwZA2At/DK3MaTq+q8S5FtCXlEqEdxD65WW/Gd++fId/XXOdrrKyEgAGRvqE5elW1DfUIzpfq0sWwQE546i+Hq8wMNJj1LShXDh2GauqFTAyNWTTkdwZjfLyOSMaDwJu0LflT/j7Bnww/W+FG5eceOqS+5soq+SUq6GxgVR3rYGhHlHFKNegNznl6v3SFwMjfcbNGFHAuSoqKdK1byeO7ztT6EtnXlKj48nKyETNWEcqXNVQu0Br9j3J4TGo5aunKoY58VMi4gCoObErUe6veLnlPAAxLwPISE6l/akFPFl5lKTgd/ebnU3C65y6/Pb5G3QqW1BzYleZzjX5nVZ1I2mtaobaBVqz70kKjynwP6X2TmtyZJzMOLJoNKM3Xmfu8+LQTQCiPAJRUlOh9arhOK87WeiEwbNnr+DsnNt9r6KS89wyNTEiMDBYEm5sZEhYeGSx9QA4P3KjTx+HQq9nZWXh4vKUylYVSpRuifkGx1FLwnc15nr16lUsLCwwMTGhXbt2NG7cmFWrVvH06VMaNWokcawfIiIigsmTJ1O/fn0sLS0pU6YMERERBAYGAtCqVSvKlClD7dq1GTlyJAcOHCA+Pnfiz7hx4/j555/p0qUL//vf//DyKnyq/Fv/MMkR4R1EfPhbKubpVlNQUcLSrhqBLt6FphHk6k3FJtLd2xWb2RDyzI+sIvbvlJOXQ+GdQ5SFgooSBpXMJN3K+UlKTCbwdZDkeOX1msiwKBq0sJPYKKsoU6dBLZ4+/ldmGoVqk5NH6Z225+4e9G35EwPbDpMct6/cxe3hUwa2HSZxHt8LSYlJBLwOlBy+nn5EhEXSqEXusISyijL1GtbB/dGzIlIqiLycHEoy/g/adGyBnr4uJw6cKVY6WemZRD/1w7S5dLeqabOaRD6WXVcjXXwwblAVeZXcOmfWvCZJIdEkvutmVVBTLuBwJOdyhbdd5OTlkFeR3VbISs8k/JkfZfN1V5dtVpOQQrSGuPpgbl8VhTxaLZvVJCE0uthdwgCKqgXvJysrK6fVXAQJCYn4+r6WHC9eeBESEkbbtrlDSyoqKjRtas/9+4+LrQegdm1rQkOKHuexsalOSGgxxoI+ATHm+g3RuHFj/vjjDxQVFTEzM0NJKecfo6TbbI0dO5bw8HB+++03LC0tUVFRoWvXrqSlpQGgpaXF7du3uXv3Ljdv3uT3339nyZIlXL9+HTMzM2bPnk2fPn34559/uH79OitXrmTt2rUMGjTog3k777xE0wndiPINJupVKM0mdiMtKYV/T+d21TmsHQPA6ak541Au+69hO7gd7Rc44nrgOmVsq1C7V3NO/LxREqfpBAeC3Hx4+yYcRRUlrFrVwaZ7Uy4t3CuxaTt3AF5XXYkLjkLdQJtmP3dHWU1Vai3shzj45xGGTvqJ1z7+vPENYPjkwSQnJnPpxD8Sm8Xr5wKw8OdlAPQd1pOgNyH4+74BoF7D2jiO7cex3TljgynJKQXWc8bHJqCgoFDkOs/SICkpmTfvWgrZWdmEhIXj4eWLjrYWZqbGnzXvvPy9/TCjJg/Bz9uf16/eMHrKUJISkzh/4orE5rcNOV14cyb+CsCA4b0JehOMn09Oudo2qsOQcQM5tLtgd2SvQd146PSYQP/gAtcKw2P7RRqtH0uU+ysinL2o/FMb1Ez18N6bs4ynzuw+GNSpJFlC8/rkPWymdqfRulH8u+402hVNsZ7QhadrT0jSDPrHjQarh1P5pzY53cImutRfPIiop36S5T3WP3clys2XBP9w5JWVMG9Tmwo9m/B43t6CIt/h/udF2q0bS5j7K0Iee1HTsQ0aJnr8uy9Ha6OZfTCpU4lT/XO0ep26h/3k7rRdO4pH60+jV8GU+uO64LzuhFS6hjUsAVDWUiM7OxvDGpZkpmfw1junHP2uulF3ZEfCn/oR5uaLTnkTGk7vhd81txIvc1u/YQezZ/2Mh6cP3t6vmDN7EgkJiRw8lDuG/teuPwAYOmwSkDPD+LV/AC9eeKGsrMTAAT3o5tCRXn1GSOLMnzeFhw9d8fbxQ1tbiwnjh1HLpjoTJswukb4S8523XL8r56quri6zC7Z27docPnyYtLS0YrVeHzx4wIoVK/jhhx8ACA8PJywsTMpGUVGRFi1a0KJFC2bPno2VlRWXL19myJAhAFSqVIlKlSoxZswYpk6dyt9//10s53pv6zkUVZXpsGQIatoaBLn7st9xhdQaV21zA6k4MQERHByymvYLHKnv2Jb48LdcWrRXssYVQFldlY7LhqFtpk9GShqRvsGcnrqV52dy1/Zqm+rTY8ME1PW0SIyOI8jNh13dFxIbVPxupz2bDqCiqsLM36aipaPJv24vmdBvqtQaV1MLE6k48gryTJw3BvOypmRmZBLoH8zGZVulJjR9Lf718GbYxNzxz00797Fp5z4cOrZl2bxpX0zHro1/o6qqwtwV09HW0eKp63NG9Z0ktcbVzEK6+15eQZ4p88ZjbmlGZkYmAa+D+H3pZo7skXYQZcqZ06BpfWaMLtnMev8zD1HW06LmJIecTSQ8A7npuJrEd05Q1VgXzfK5LyDp8clc77cCu9+G0PHir6TFJvFy2wXJGleAV0ecUNRUpcrQdtRbOID0uGTC7r3AdWnuBCAlDVXslg9F3UyfzJQ04nyDuTdpG/6nCl+n7n32Iap6Wtj97ICGsS5RnoGcHbya+HdaNUx00SmXqzUtPpnTA1fQYukQ+p77ldTYJNy2X5CscX1P/8u/SZ1XbFePuIAI9jSeAsCj9acgO5uG03uhaaZPcnQ8flfdeLDqSInKGmD1/zajpqbKhj+WSTaR6Nh5gNQaV8uy5lJxlJWVWLViPhYWpiQnp/DihRddug7i4qXrEhtdHR22bF6FqakRsbHxuLv/S6vWPXn02L3EGktCdik51x07drB+/XrCwsKoVq0ay5cvp3HjwpcuvsfX15cWLVqQnZ1NUFDRm/R8DHIxMTHfXntbBmPHjiU6OprDhw8XuBYcHEyTJk1o1KgR06dPR1dXF1dXV6pUqUKtWrUKbCLRokULdHR0WLVqFUlJSSxYsAA3NzcmTJjA7NmzuXTpEn5+fjRu3Bg9PT2cnJyYOHEi586do27dusyfPx8HBwcsLS2JiIjg559/pn79+mzYsKGAtvW1xn32sikNTqe9+doSis39Z3u+toRiU9f6w7sg/VeYrVD4PIX/GtGyV6D9J5kSduNrSyg2UREFJzZ+LBkDupbIXlHGkMWJEycYNWoUa9asoWHDhuzYsYMDBw7w4MEDypYtW2haaWlptGvXDhMTE+7evftZnOt3NeZaGObm5ly4cIH09HS6dOlC8+bN2b59O4qKshvuGzduJDExkZYtWzJs2DAcHR2xtLSUXNfR0eH8+fN069YNe3t7Nm7cyPr162ncuDEKCgrExMQwduxY7OzscHR0xM7OjmXLln2p2xUIBIL/PNlZJTtksWnTJgYMGMDgwYOpWrUqq1evxsTEhF27dhWZ98KFC7G2tsbBofCJXZ/Kd9Ny/VYRLdfSR7RcPw+i5fp5+P/ack3vU7KWq9IR6ZZrWloaZmZm7Ny5k27duknCp0+fzosXL7hw4YLMdC5fvszs2bO5desWZ86c4ZdffvksLdfvasxVIBAIBN8GnzrmGhUVRWZmJkZG0hupGBkZER4ue6ZzaGgokyZN4u+//5Yso/xcCOcqEAgEgi9OaU1oyr+sKTs7u9ClTqNGjWLYsGHY2dnJvF6a/L8YcxUIBALBf4vsTLkSHfkxMDBAQUGhQCs1MjKyQGv2Pbdv32blypUYGBhgYGDAxIkTSUxMxMDAgN27d5fq/YmWq0AgEAi+OJ/aclVWVqZOnTrcuHFDasz1xo0bdO0qezz33j3prT0vXLjAmjVruHbtGubm5jLjfCzCuQoEAoHgi5Od9em7BY8fP57Ro0dTv359GjRowK5duwgNDWXo0JwPfCxevBgXFxfOnMmZDFWjRg2p+G5ubsjLyxcILw2EcxUIBALBF6c0xlx79OhBdHQ0q1evJiwsjOrVq3PkyBHJ0snQ0FD8/D7vLm6FIZyrQCAQCL442dml852bESNGMGLECJnXtmzZUmTcgQMHMnDgwFLRkR/hXAUCgUDwxSmt2cL/VYRz/coYlcK4w5einUrh24n91/iWNmdwe37ga0soFkdqLWCzXPE39v+a9MOc+/KJHzb8j7DfoOXXlvDFKY0x1/8ywrkKioVwrJ+Hb8WxAt+MYwWEY/0GKOHHyr45hHMVCAQCwRdHtFwFAoFAIChlhHMVCAQCgaCUyZKx69L3hHCuAoFAIPjilNZSnP8qwrkKBAKB4IsjluIIBAKBQFDKZImWq0AgEAgEpYvoFhYIBAKBoJQRs4UFAoFAIChlxCYSAoFAIBCUMqLlKviiWP/UltqjO6FurMtbryDuLt5HqLNnofb61crQdMlgjOtUIjUmgRf7ruPyxynJdbOG1Wgwsw+6lcxQVFMhPjASj0M3ebLtgsSm65G5mDeqXiDtaM9AjrSdVaTeNpN7Yt+/NWo6GgS4+3B6/l+EewcVGadCg2p0njcI4yoWxIfFcGvbWZz3X5NcH3loHhUbFvy+YphXIOva/wLAL3f+QK+MUQEbj+tunO0/tsj88zJu+gh6DXJAW0eLZ64vWDp7Nb6ehX+iyrZRXSbPHUv5SuVQVVMhODCUE/vPsHtL7jaGf53YjF2TegXi+ni8oluLz7c142P3Z+w+cJwXnj6ER0axdM5UunVu99nyK4phUwfjMLAzWjpaPHd7ydq56/Hzel2ofZ2GtRgzeySWlcqgqqpKaFAYZw9c4OC2IxKbClXKM3z6YKrUrIxFOXN2rtnDrrV7Pllrz8l9aT2gPRo6Gvi4efPX/O0EeQcUaq9rrMfAeUOoYF0R0wpmOJ24xbbpG6RsFBQV6DquJ817tULPRJ+QV0EcXPE3T2+5FUuT1eC2VB3XGTVjXWK9gnBb8DeRDwt/DuhUK0u93wajX6cSaTEJ+P59nRe/n5ROc0g7Kg9rh3oZI5KCInm5/jSvj96RslHUVMNmZm/K/miPsp4mScFRPFt+hICzD4uluySICU2CL0alLg1ovMiRO3N3E/LIC+uf2tJ57wwOt55JQnBUAXslTTV+3D+LkIeeHP9xAboVzWi1dhTpyak83X4RgPTEFJ79dYVojwAyktMwta1C8xVDyUhO4/neqwBcHrUOeaXcqqCgrEiff1bge67of6jmY7rQbEQnjk7fSuSrEFr/3IPh++awpvU00hJTZMbRK2PEkL9+4fGRWxyevInydlVxWDKUxKg4nl96BMC+0b+joJyrR1FZiUmXVvDs/ANJ2Kau85BTkJecaxnrMuHsMimbDzFswiAGj+3P3J+X8trXnzFTh/HnkfX82LgvSYlJMuMkJSaxf8cRvF76kpKcQl272iz430ySk1M5vPs4AJOGzUIpT3kqqyhz8uZ+Lp+5JjPN0iIpKRmriuXp2rENc5as+ax5FcXAcf3oP7o3y6asxN83gKFTfmLdwVX0bz6YpMRkmXGSE5M5uvMErzz8SElOwcauJr+snEJKSgon9+R86FpFTYWQgDBuXXBi5C/DSkVrlzHd6TTSga3T1xPiG0yPSX2Ys38R01qNJ6WQOqyorEh8dBxntpyg9YD2Mm16Tx9Asx4t+XPWZoK9A6nVog5Tt89kYY/Z+D8v+vuiZbs2pO6SQbjM3k2EsyeVB7el+f5fuNTiF5KCCj4HFDXVaHF4FhEPPLjacT5aVmbYrxtNZlIqnu9eoiv91IZa8/rxePoOolx90K9bCbv/jSAtJpHgf3IcvpyiAi0PzSItNpF7o9eTFByNurk+WakZJSnSYvO9T2iS/7DJ/y+ePHmCvr4+P/zwwxfPu9bIjngddeLlwZvE+ARzd8FeksJjqDGojUz7yt0bo6imwvWpW3nrGYjfxUe4bzlH7ZEdJTaRz17je+YBb72CiA+IwPvkXQJuPcPUvqrEJjUmkeSIWMlhZlcVRXUVPA7fKlJvk2EduLnlDM8vPSLMK5Cj07agoqFKHYfGhcZp4NiGuLAYzi7aQ4RvMI8O3cD1uBPNR/0osUmOTSQhIlZylLetirK6Ko+P3JTYJEbHS9lUbVmH1IRknp0v/hv2oFF92bnhb66ev4GPxyvm/rwEDU11OveQ/cAEePHUk4unruLr6UfQmxDOHb/EvRsPqd+wtsQmLiaOqIhoyVGvQW3U1FU5efBssbV9DM0b2zN5zBDat2qGnPzXe3D1GdGTvzcd5OYFJ/w8X7N08grUNdVp1112PQbwfObNtTM38PN6TUhAKFdOXMX55mNq29eS2Hg88WTTkq38c+o6qcmppaK1w/AfObPlBI8uPiDQ6w1bpq5HVUONxg7NC40TGRjB3kU7uX3sBgkxCTJtmvVoydktJ3G/7kJ4QBhX913G/YYrnUc6fFBT1dEd8TvixKv9N4j3DsZ13l5SwmKoNLitTPtyPXKeA86TthLrGUjg+Ud4bDpHldG5z4HyvZryav8N3py6T+KbCAJOP+DVvhtUm9BFYlOhX3NUDLW5M2QNkc5eJAVGEunsRfSTVx/U/DFkZ5fs+NYQzjUfe/fuZfjw4bx8+RJPz8K7YUobeSUFjGwqEHD7mVR4wO1nmNpWlhnHpJ4VIc6eZKak59rfeoaGqT5aZQt2mQIYWJfDtH5lQh68LFRL9QGtCLjxhMSQ6EJt9Moao22sh49Trt6M1HT8nD0oV79KofEs61bG2+mpVJjX7adY2FRAXlFBZhy7/q3wuulObBF67Pq2wv3kXdJT0gq1yUuZcuYYmRhy72auM05NScXlvjt17GyKlQZAtZpVqGNnw+N7hXf39RrowJ3r9wkNDi92ut8q5pZmGJoY4HzrsSQsLSUN94dPsbG1LnY6la2tqGlrjfuDJ59DJgDGZU3QM9bn2W13SVh6ahoezs+pUr/aJ6WtqKxEWqp0XUxLSaOqbcHhl7zIKymgV6sCoTel/0dCbz3DsJDngKFtZSIeekg9B0JvPEXdTB+Nd88BeRUlMlPTpeJlpKShX6cScu/+7yw62BL5yIt6ywbT9ckmOtxahfW0HpLrpU1mlnyJjm+Nb0/xZyQ5OZmjR48yePBgunbtyt9//y11/fHjxzRv3hwTExOaNWvGlStX0NXVxcnJSWLj4eFBnz59KFOmDFZWVgwfPpywsLAP5q2qr4W8ogLJkbHSmiJiUTfSlRlH3VhXpj2AupGOVLij83pG+vxFz/NLeL73Ki/2XZeZpk4FU8wbVeflwRtF6tV6l358vvwTImPRLERvTjxdEmTEUVBSRENPq4C9YQVTKjasgfOhwvVUbmaDvqUxjw4XrVkqXSMDACIjpB12VGQ0hsYGH4x/1e0Mrm9uc/jKXxz66zhH9p6UaVeuYlnsmtTj2L7Txdb2LaNvrA/A24i3UuHREW/RN9L/YPyTjw9z49Uldl7cwsk9pzn19+dr7esY6wIQGxkjFR4bGYtuEXW4ODy97UbH4V0wq2iOnJwcNZvWxq5DQ3SN9YqMp/zuOZAaGScVnhIRi2q+/+n3qBrrkhIh/T+V8u5/TNU4J07ozadU7NcC/doVAdCrXYGKA1qioKyIin7O/51mOWPK/miPnKICToNW8++qozndyXP6lrwAisH33nIVY655OH36NGXLlqVmzZr07duXoUOHsnDhQpSUlEhISKBv3760atWKbdu2ERoayuzZs6Xih4aG0qlTJwYNGsSSJUtIT09nyZIl9O/fn6tXryIv/+F3mQKVSE6O7CJqVoFrcrLDT/dcgpKGCiZ1rWgwpx9xARF4n7hbIL3qA1qRGPYW/2vuUuF1HJrQ7bfhkvM9w1bJFiwn9+H/BBlRcoILxrPr15q4sLd4Xi+8ZWjXrzUB7r6EvPAv1KZzzx9YuHqm5HzcwGmy9VN0eb9nsMNo1DXUqVW/JlPnjSPoTTBnj10qYNfL0YHw0Ahu/3Pvg2l+i7Tv3oYZK6dKzmf8lPM/kf+3lPtAPX7PuO6TUNNQw7peDcbNGUlwQCiXj/9TKlqbdGvO8N/GSM5XDV2WozWfLjkZYSVl76KdjFwxjtVX15OdDWH+odw6ep0WvVsXK34BTXIf6OaX8dzIG/7i95OoGunQ5uxCkJMjJSKW10ecqD6hC9mZWZI8UqLieDx9B9lZ2bx9+hplPU3qLnbkya+l/91hMaHp/xF79+6lX79+ADRt2hQ1NTUuXLiAg4MDR48eJTMzkw0bNqCmpkb16tWZNm0aI0eOlMTfuXMnNWvWZPHixZKwbdu2Ub58edzc3Khfv36headEx5OVkVmgxalmqF2gdfqepPCYAq1aNcOc+Mn53nzjAyIAiPYIRM1IB9upPQo4V3klBar2asrLgzcl/3DveXHVhQB3H8n5+wlHWka6Ut21mgbaBVqmUjoiYtDMd48aBjpkpmeQ9FZ6/EpBSYF6PZvx6NANsjJlb0SqYaBN9Xb1ObPgr0LzBLhxyYmnLs8l58oqSgAYGhtIddcaGOoRFVF49/N7gt6EAOD90hcDI33GzRhRwLkqKinStW8nju87Q2Zm5gfT/Ba5c+Uez91yhxiUlZUB0DfSJzw4QhKuZ6jL28i3BeLnJyQgFIBXHn7oG+kxfOrgUnOuLv844+PmJTlXVM6pA7pGekSH5E4U0jbUIbaIOlwc4qPjWDtqBUoqSmjqavE2LJp+swYREVB0L1bau+dA/laqiqF2gdbpe1LCYyQt1PeoGmjnXHsXJzMlnUdT/+TxL7tQNdIhJewtFR1bkx6fTGp0PADJ4TFkpWeSnZXrqeO8g1FUV0XFQIvUqPiSFcIHKK0JTTt27GD9+vWEhYVRrVo1li9fTuPGsud9ODk5sXnzZlxdXYmLi6NChQqMHTuWQYMGlYqWvIhu4Xe8evWKhw8f0qtXLyDnLa5Pnz6SrmEvLy+qV6+OmpqaJI6tra1UGk+ePOHevXtYWFhIDmvrnHEmP7+iZwhmpWcS8cyPMs1qSoWXaVaT0MfeMuOEufpgZl8VhXeO4r19Ymi0xJnKQk5ODgVlpQLhFX6wRVVfi5eHbha4lpaYQpR/mOQI9w4iLvwtVk1zxycVVZQob1cVfxevAvHf88bNG6sm0vdYuakNQc/8yMqQdkA12tuirq/Fo8MF9bynfq/mZKal8+Ts/UJtIGeWb8DrQMnh6+lHRFgkjVrYS2yUVZSp17AO7o+eFZFSQeTl5FB651Ty0qZjC/T0dTlx4EyJ0vuWSEpMJuh1sOTw83pNZFgU9s1zXySVVZSobW/Ds8fPi0ipIPJyciipFKynH0tKYgph/qGSI8g7gLfh0dg0y52MpqSiRFW7Gni5eJRKnump6bwNi0ZBUQH7jo1wueJcpH1WeiZvn/ph2kJ63N+0eU0iC3kORD72xqhBNeTzlJVJi5okhUSTmO85kJ2RSXJINNlZ2Vh2a5QzU/hdKznykRdaFUxyW72AVkVTMpJSSt2xQk7LtSSHLE6cOMGsWbOYNm0at2/fxt7ent69exMQIHsplbOzM9bW1uzZs4f79+8zfPhwJk+ezNGjR0v9/kTL9R179+4lMzOTmjVzH/zvu2YCAwPJzs7+YNdMVlYW7du3Z+nSpQWuGRnJnmCUl6d/XqT1urGEu78i9LEX1o5t0DDR48W+nCUc9jP7YFynEuf6LwfA59Q9bCd3p9XaUbisP41uBVPqjuvC43UnJGnWHNKOuIAIYn1zWlpmDapRe3RnyTKcvFQf0IqgO8+Jf1O4Y87L3V2XaDXegQjfYCL9Qmg1sTtpSam4n87tAu29JmfN6dFpWwB4uO8ajX5qz48LBvFw/zXK2VahXq/mHPp5Q4H07fu3wffuc94GFD4RyK5vK56cvV/o0p+i+Hv7YUZNHoKftz+vX71h9JShJCUmcf7EFYnNbxsWADBn4q8ADBjem6A3wfj5vAHAtlEdhowbyKF3y3Dy0mtQNx46PSbQP7jE2j6GpKRk3gTm5JWdlU1IWDgeXr7oaGthZmr8RTQAHNlxnME/D8TfJ4A3rwIYMsmR5MRk/jmZuxRp3h8566eXTloBQK+h3QkOCOGNb85DsU6DWvQf04cTe3JfTBSVFKlQpRyQ8yJkYKxHZetKEgf/MVzaeQ6HCb0I9g0i5FUw3Sf2IjUphXunb0tsxq79GYAtU9dLwsrVKA+AmqYa2VlZlKtRnoz0DIK8AwGoVKcy+qYG+D/3Q89Un55T+iEvL8fZbbLH5vPiue0iDTaMJdrNl4hHXlj91AZVUz189+aUn82cvhjUqcjNPjnPgTcn72E9rQcN1o3mxbpTaFYypfqErjxfk/sc0KxoikE9K6JcvFHW0aDq6E7oVC3Dw5+3Smx89lyl8tD21FsyCO+//kGjrCE1p/fCZ3fBZ0VpUBrDqJs2bWLAgAEMHjwYgNWrV3Pt2jV27drFwoULC9hPmzZN6nz48OE4OTlx5swZevfuXQqKchHOFcjIyODgwYMsXLiwwBKc0aNHs3//fqpWrcqhQ4dITk6WtF5dXFykbGvXrs3JkycpW7YsSkolf+P2PfsQVT0t6v/sgLqxLtGegVwYvJqEd2vbNEx00SmX+5BMi0/m3MAVNF06hJ7nfiU1Nokn2y9I1rgCyCnI03B2P7TKGpKVkUWcfzgPVxzm+d/Say61LI2waFKDq+M3FVvv7a1nUVJVpuuSIe82kfBl16DlUo5O10J6ctDbwAh2D11F5/mDaDCwLXHhbzm7eI9kjet79MoaU7FxDQ5NLOh031OxUQ0MK5pxeMrmYmvOy66Nf6OqqsLcFdPR1tHiqetzRvWdJLXG1czCVCqOvII8U+aNx9zSjMyMTAJeB/H70s0c2XNCyq5MOXMaNK3PjNHzP0rbx/CvhzfDJuaOK2/auY9NO/fh0LEty+ZNKyJm6bJ/8yFUVFWYuuxntHS0eOH2kskDfpFa42piLu3s5RXkGTdnFKZlTcjMyCTIP4Qty//k1N7cCU2GJgbsvvKn5LxMBQu6DeqK6z13JvaeysdwdutJlFWVGbJkJBramvi6e7PccbHUGlcD84Ivxssv/i51Xr+dPREB4UxqOhoAJRVlek8fgHFZE1KTUnC/4cLmyetIipO9fjovAWceoKKnSY3J3VA11iXWMxAnx9UkBUYCoGasi2Z5E4l9enwyt/quoN7yIbS7tIS02EQ8t16QrHGFnOdA1VEd0bIaRlZ6JuH3XnCt62JJmgDJwdHc6reCOosG0v6f30iJiMHv0E1erDtVvMIsIZ865pqWloa7uzsTJ06UCm/dujUPHxZ/SV58fDzm5uafpEUWcjExMd/gPKzS5fz58wwePBgvLy/09aVnNK5bt46dO3dy9+5d6tatS5s2bZg6dSqhoaHMmTOHFy9ecO7cOZo2bUpISAjNmjWjYcOGTJ48GUNDQ16/fs3JkydZunQpWloFZ8MerDn+S93mJ+Gv8O18fPFs8udZl/c5cHte+hNFPhcta4/42hKKTTlF2TNr/4s4pKl/bQnFpoPHx73IyuLfqsM/bJSHmp47pc5DQkKoXr0658+fp0mTJpLwlStXcvToUR4/fpw/iQJcunQJR0dHLl++XOScmI9BjLkCf//9N82aNSvgWAG6detGQEAAjx8/5tChQ7x8+ZLmzZszf/58Zs7MaSWoqqoCYGZmxuXLl5GXl6dnz540bNiQ6dOno6ysjIqKyhe9J4FAIPgvk1XCozDyD9cVZwgP4MGDB4wcOZKVK1eWumMF0S0MwKFDhwq9Vr58eWJiYiTnede0nj9/Hjk5OSpUqCAJq1SpEnv37v0sOgUCgeB7IZtP6xY2MDBAQUGB8HDpORmRkZEfnONy//59+vTpw+zZsxk+vGQt6OIiWq4l4MCBA9y7dw9/f38uXbrE7Nmz6dChAwYGH950QCAQCAS5ZGTLlejIj7KyMnXq1OHGDenNY27cuEGDBg0Kzffu3bv07t2bX375hXHjxpX6fb1HtFxLQEREBMuXLycsLAxjY2N++OEHFi1a9LVlCQQCwTfHp7ZcAcaPH8/o0aOpX78+DRo0YNeuXYSGhjJ06FAAFi9ejIuLC2fO5Mw6d3Jyom/fvgwfPpw+ffpIds9TUFDA0NDwk/XkRTjXEjBp0iQmTZr0tWUIBALBN09pTJHs0aMH0dHRrF69mrCwMKpXr86RI0ewtLQEcnbNy7vHwIEDB0hKSmLDhg1s2JC7EqFs2bI8e1ay9e0fQjhXgUAgEHxxSqPlCjBixAhGjJA9k33Lli0FzvOHfS6EcxUIBALBF+fbWdz3cQjnKhAIBIIvjnCuAoFAIBCUMqXVLfxfRThXgUAgEHxxsr5v3yqcq0AgEAi+PFmi5Sr4nAQrfBtbO6t/Qx82nq1g9bUlFJtvab/em092fG0JxSZu8NCvLaHYuD4u+LnC/w98G0++j0c4V4FAIBB8cTKKsf/vt4xwrgKBQCD44oiWq0AgEAgEpYxYiiMQCAQCQSkjZgsLBAKBQFDKiNnCAoFAIBCUMmLMVSAQCASCUkZ0CwsEAoFAUMqICU0CgUAgEJQyoltYIBAIBIJSRnQLCwQCgUBQymR8bQGfmf/XzrVz587UqFGD1atXA2BjY8OoUaOYOHHiV9XVanIP6vdvjZqOBoHuPpybv5sI76Ai45RvUI0O8xwxqmJBfFgMd7ad4/H+a5LrdXo1p8f/RheI92vVIWSkpgMgJy9Hq8k9qd29CZrGuiSEx/D01D1urDsOGbJHSJpP7kG9Aa1R1dEgyM2HS8XQatmgGu3nO2JU2YL48BjubT2Hax6t1TvZ03hsF/TLmSCvpEC0XxgPd17k6XEnqXxbTOkplW5CeAy/242XmWflwW2pMbYTasa6xHgF4bJgHxHOnoVq1K1WBttlgzGoU4m0mAS8913n399PSdmU796I6uN+RLuiKenxyYQ6Pcf11wOkRMTm3OeP9tQY/yNa5XPuI84vDI/tl/A76iQjxw8zbOpgHAZ2RktHi+duL1k7dz1+Xq8Lta/TsBZjZo/EslIZVFVVCQ0K4+yBCxzcdkRiU6FKeYZPH0yVmpWxKGfOzjV72LV2z0fpKwmP3Z+x+8BxXnj6EB4ZxdI5U+nWud1nzzcvKp27odajH/L6+mS+eU3i9o1kPH/6wXjy5hbo/rED5CC6V0dJuJyePhojxqNYqTLy5mVIvXGFxN9XlIrWMkPaU358F5SNdUn0DMRz/h5iHnrI1qeiRPVVI9CqVQGNyhbEOHvi0uPXAnZySgpUnNIDs97NUTHRIzUiFv8tZwnYcalUNH+Ib2i78o/iu3aukZGRLF++nCtXrhAWFoaOjg7Vq1dnypQptGrVin379qGoWLIiePbsGb/99hsuLi7ExsZiZGRE3bp1WbZsGZaWlp+suemYH2k8ohMnp28j8lUILX/uzuB9s1nfejppiSky4+iWMcLxrxm4HrnFscmbKWdXlR+XDCEpKo4Xlx5J7NKSUljXYqpU3PeOFaDZmC7Y/9SOk9O2EuYZgEk1S3qsGUNGWjr31p8qkG/jMT/ScGQnzkzfRpRvCM0ndWfg/tlsblWE1rJG9N89A/cjtzg1eTNlbavScekQkqLj8LiYozU5JoE7G04R6RtMVnomldvUpcuqkSRFx+Fz44kkrUifYPb2Wyo5z86U/QJQrmsDbH91xHn2biKcvagypC2t9s/gXMuZJAVFFbBX1FSj9aFZhD/w5FKnBWhXMqPRulFkJKXise0iAEZ2lWm0fixuvx4g4JILqkba2C8fSpON47jWdzkAqW8T+PeP08T55NyHRdu6NFwzgtSoOIKvPymQb1EMHNeP/qN7s2zKSvx9Axg65SfWHVxF/+aDSUpMlhknOTGZoztP8MrDj5TkFGzsavLLyimkpKRwcs8ZAFTUVAgJCOPWBSdG/jKsRJo+haSkZKwqlqdrxzbMWbLmi+X7HuVmrdAYNZHEzb+T8eIZKp27ob14JTFjB5MVEV54REVFtGYuJP35E5Rq1pa6JKekTFZcLMnHDqDSoUupaTVxaETVpYPxmLWTmIeelBnanroHZ3O/2VRSZNRfFOTJSk0nYNdlDNvURVFbXWa6NlsnoWphwItp20nyC0XZSAcF1S/3EYHvfUKT/NcW8DkZNGgQLi4ubNy4kcePH3P48GHatWtHdHQ0AHp6emhpaRU7vcjISBwcHNDU1OTIkSM4OzuzdetWKlSoQHx8fKlobjSsA05bzvLi0iPCvQI5MW0rKhqq1HJoXGgcO8c2xIfFcGHRXiJ9g3E5dAP34040GdVZyi47GxIiYqWOvJStXwXPa654XnMjJjASz6uueFx1oUwd2V+ZsR/egXtbzuJx8RERXoGcnroVZQ1Vahahtf7AHK2XF+4l0icYt0M3eHrciUZ5tL6+9wLPKy5E+Ybw9k04zn9dJszjDZZ21aTSysrMJDEiVnIkRcv+DaqN6sirI074HrhJnE8wj+ftJTkshio/tZFpX6FHYxTVVLg/eSuxnoEEXHjEi03nqD4qt5ViWL8yySHRePx5icSACKJcffHcdQWDepUkNmF3XxB4yYU4nxAS/MPx3HmZmJcBGDeoWmj5FEafET35e9NBbl5wws/zNUsnr0BdU5123WXfA4DnM2+unbmBn9drQgJCuXLiKs43H1PbvpbExuOJJ5uWbOWfU9dJTU4tsa6PpXljeyaPGUL7Vs2Qk//yTRjV7n1IvXqJ1MvnyAzwJ2nrH2RFR6PayaHIeOpDR5Ph94q0OzcLXMsKDyVp23pSr14iOz6u1LSWG9OZ4MO3CNp3nUTvIDzn/EVa2FvKDGkv0z4rKZWXv+wg6O9rpATLcL6Afota6De3wW3ACqJvPyMlIII4Vx/e3ntRaro/RFYJj8LYsWMHtWrVwsTEhBYtWnDv3r0i833+/DmdOnXC1NSU6tWrs3LlSrKzS3961XfrXGNiYrh//z6LFi2iRYsWWFpaUq9ePSZOnEjPnjndiZ07d2bGjBlS8RISEhg1ahQWFhZUqVKFDRs2SK49ePCAmJgYNm3aRJ06dShXrhxNmzbl119/xdraGgB/f390dXU5evQoHTp0wMTEBDs7O65fv/5BzXpljdAy1sPH6ZkkLCM1HX9nD8rWr1xovLJ1K0vFAfC5/RRzmwrIKypIwpRUlZl65w+m3d/AwJ3TMbUuJxXnzWNPKjSsgWElMwCMrCyo2MgarxvuBfLUfafV97a01jfOHpQpQqtFvcq8yqfV99ZTzPJpzUv5JtYYVDTD31m6G0zP0phJDzcw4c7v9NgwAd2yRgXiyispoF+rAiG3pPMMvf0MQ1vZOg3rWxH+0JPMlNxWffDNZ6ib6aPxLo+IR16oGuti0a4uACr6mpRzaEjwtcJbpCZNrdGuZEr4A9ndeYVhbmmGoYkBzrceS8LSUtJwf/gUG1vrYqdT2dqKmrbWuD8oWav5u0NREUWrKqS7PZIKTnd7hGL1moVGU7JriLJdYxK3/fG5FUqQU1JAq1ZFom5Kd1dH3XyKrm2Vj07XuKMdce6+lBvTmWZum2lyfx1Vlw1BQV3lUyUXm+wSHrI4ceIEs2bNYtq0ady+fRt7e3t69+5NQECATPu4uDi6d++OsbEx169fZ8WKFWzYsIGNGzeW8t19x93CmpqaaGpqcuHCBRo2bIiqqmqx4m3evJlJkybxyy+/4OTkxC+//EK5cuXo2rUrJiYmZGVlcfr0aXr16oVcEZ9MWrhwIcuWLcPa2po///yTAQMG4Orqirm5eeGajXQBSIyUblEmRMaibapfRDwdXt39N1+cOBSUFFHX0yIhIoaoV8Gc+mU7oS/foKKhSsOhHRhxbCGbO84m+nUYAE5bzqKsocqEf1aRnZmFgpIitzac4tG+qyjlz9NYttbEyFi0TIrW6ndHWmvie636WiSExwCgoqXG5IcbUVBWJDszi4sLduN7M9cpBLn7cmbaNiJ9g9Ew0KbpxG4MPbGIre1mQkSixE5FXwt5RQXJOOh7kiNiMW0m+0GqZqxLUki0VFjKu/tUM9YhMSCCSBcf7o7bRJON41BQVUJeSZGQW8+4P3mrVDwlLTW6u26Q3MejuXsIvvHhcb286BvnlOfbiLdS4dERbzEyNfxg/JOPD6Orr4OCogJ/rd3Lqb/Plij/7w05bR3kFBTJeiv9G2fFvEWpTn3ZcfT00Zw4g/hl8yFZdjf850BZXxt5RQXS8tXftIhYlJvbfHS6auWM0bWvSlZqOk+Gr0VJW4Oqvw1BxUSPpyN+/1TZxaI0Zgtv2rSJAQMGMHjwYABWr17NtWvX2LVrFwsXLixgf/ToUZKTk9myZQtqamrUqFEDLy8vNm/ezIQJE4p8ppeU79a5KioqsmnTJiZNmsSePXuoVasWDRo0oFu3btja2hYar379+kyfPh0AKysrXF1d2bx5M127dsXOzo5p06YxduxYpk+fTr169WjatCm9e/cuMN46bNgwunfvDsDKlSu5fv06u3btYt68eRIbJSUl5j7fKTnfPyxnYlWBLgo5uQ92W+S/nltHcsIDXH0IcPWRXH/j4sW4C8tpOPgHLizeC0DNLg2p06MZxyZtItwrCLMa5ei4cBBvA8LJTk2n82/DJfEPDl39PuN8Sj6stcB7qFzBe0hNSGF7xzkoa6hSoYk17eY5EhMYyeu7zwGkHC1AoJsPE51+p1avZkRsKTgho2CRFq2zQHnmC9eubI7tkkE8W3eKkJtPUTPWpe78/tivHMb9Sdsk8dITUrjQbi5KGiqYNLWm3sKBJAREEnbneaF5t+/ehhkrc8fGZ/w0Oydv8v/GxSlrGNd9EmoaaljXq8G4OSMJDgjl8vF/Phjv/yWFlKfW9HmkXDhNhueX6zaVQsYzoTCtxUFOXg6y4d+x68mIz3lZ8Jj9F/WPzEXZSKeAM/8cfOqYa1paGu7u7gUmoLZu3ZqHDx/KjOPs7EyjRo1QU1OThLVp04Zly5bh7+9P+fLlP1FVLt+tcwVwcHDghx9+4P79+zg7O3Pt2jU2btzI/PnzmTZtmsw4dnZ2Bc7Pns19058/fz7jx4/n9u3bPHr0iL///ps1a9Zw8OBBWrRoITMdeXl56tevj4eHdHdgeno627sulpwrKOf8HJpGusTlaTlpGmiTEFl4ZU+IiJW0et+jYaBNZnoGSW8TZMbJzsom6NkrDCqYSsJ+mD2Au3+e59+zDwAI9wxA18KQZuO6sqPTXILcfCW2iu+0auTTqmGoXaA1m1+rRiFak/Nqzc7mrX9OizrshT+GVuY0Hd9V4lzzk56USoR3EPrlTYnIE54aHU9WRiZqxjpS9qqG2gVas+9JDo9BLZ9GFcOc+CkROWNpNSd2Jcr9FS+3nAcg5mUAGcmptD+1gCcrj5IUHC25j4R3PQNvn79Bp7IFNSd2LdK53rlyj+duLyXnyso5k0z0jfQJD869Oz1DXd5Gvi0QPz8hAaEAvPLwQ99Ij+FTB/+/dq7ZcbFkZ2YgryfdwyKvq0dWjOzyVKpTH0Wb2qgNGPwuRA45BQX0z1wjcfM6Ui99nt6AtOg4sjIyUX7XU/QeZUPtT3KAqWExpIZGSxwrQOK7Wf6qFobfhHONiooiMzMTIyPp4SAjIyPCw2VPSgsPDy/Qe/g+fnh4eKk61+92zPU9qqqqtGrVipkzZ3LlyhUGDRrEihUrSEtL++g09fX16datG8uWLcPZ2RlLS0tWrVr1UWlF+4dJjgjvIOLD32LVNLe7UlFFCUu7agS4eBeaRoCbN5WaSI+9VWpqQ/AzP7IyMguNZ1rNkvjw3IeJkpoyWflm3GZlZSEnL09aYgpv/cMkx3utFfN0rSq80xpYhNYgV28q5tNasZkNIR/QKicvh4Jy/s7pXBRUlDCoZCbpVpboT88k+qkfps2lu4BNm9Uk8rFsnZEuPhg3qIq8Sm5+Zs1rkhQSTWJAjnNTUFMuMDtZcl5E15KcvBzyKkW/0yYlJhP0Olhy+Hm9JjIsCvvmuV2WyipK1La34dnjwp20LOTl5FBSKbwc/1+QkUGGjxdKdaV7sJTq2pLx8l+ZUWLGDSF24gjJkbx/F9kpKcROHEHanRufTWp2eibxT19h0EK6C1i/hQ0xj70+Ot2YR56omOhJjbFqvJtrkRwYUVi0UqU0xlyBAl252dnZRXbvyrKXFf6pfPfONT9Vq1YlIyODlBTZS0UeP35c4Lxq1cJndyorK1O+fHkSExOlwvOmk52djaura5HpvOf+rks0HduV6j/YYlylDN3/N5q0pBSens6dAddjzRh6rBkjOX+07xraZvp0XOCIYSVz6vVtSZ1ezbm7/bzEpuWkHlg1t0GvrBGmNcrRbdVITKqV5VGe9aWe19xoNrYrVVrVQbeMIdV/sKXx8I68vCxdJu9x3nmJJmO7Uq2DLUZVyuDwTuu/ebQ6rB2Dw9pcrS77r6Flpk/7BY4YWplTp19Lavdqzv08WptOcKBCE2t0yxphaGVOw5GdsOnelGcn70ps2s4dgGWDauiWNcK8TiV6bZmEspqq1FrY93hsv0jFPs2pNKAl2lbm1P91EGqmenjvzbn3OrP70ObwbIn965P3yEhOpdG6UehULUPZjrZYT+jCy+0XJTZB/7hR5od6VP6pDZqWRhjZVcZ2yU9EPfWTLO+x/rkrps2s0bQ0QtvKnGqjO1KhZxNeH79LSTmy4ziO4/vTomMzKlQtz9zfZ5KcmMw/J3N/v3l/zGLeH7Mk572Gdqdx24aUqWBBmQoW/NivI/3H9OHy8asSG0UlRSpbV6KydSWUVZQxMNajsnUlLMoXPjegNEhKSsbDyxcPL1+ys7IJCQvHw8uXkNAilsGUIiknj6DSpgMq7TujULYc6qMmIq9vQMqFnCVK6oNHor1srcQ+099P6siKioTsLDL9/chOyO1xUahohUJFK+TUNZDX0s45L1uuQP4lwX/recz7tsRiYGs0KltQdelgVEz1CdyT0/tgNbc/9Y7Nk4qjUcUCTetyKBtoo6ihiqZ1OTTzTGAMPX6H9LfxWP8xDo2qZdCxq0rVpUMIO/OA9MjSm+lcFFlyJTvyY2BggIKCQoFWamRkZIHW7HuMjY1l2gOFxvlYvttu4ejoaAYPHoyjoyPW1tZoamri7u7O+vXradGiBdra2jLjPX78mLVr1+Lg4MCdO3c4dOgQf/75JwCXLl3ixIkT9OjRAysrK7Kzs7l06RL//PMPs2fPlkpn165dWFlZUaNGDXbs2EFAQADDhn14HeGdredQUlXmxyVDcjZmcPdl76AVUutGdSwMpOLEBEawb+hqOsx3xG5gW+LD33Jh8V6pNa6q2up0/W0EmkY6pMQnEfrCn119lxD05JXE5vzCPbSZ1osflwxFw1Cb+PAYXA7d4Ob6kzK/vHhv6zkUVZXpsGQIato5Wvc7SmvVNs+nNSCCg0NW036BI/Udc7ReWrRXssYVQFldlY7LhqFtpk9GShqRvsGcnrqV52fu56Zrqk+PDRNQ19MiMTqOIDcfdnVfSGxQJAb51PqfeYiynhY1JznkbCLhGchNx9UkvnOCqsa6aJY3ltinxydzvd8K7H4bQseLv5IWm8TLbRcka1wBXh1xQlFTlSpD21Fv4QDS45IJu/cC16WHJDZKGqrYLR+Kupk+mSlpxPkGc2/SNvxP5d5Hcdm/+RAqqipMXfYzWjpavHB7yeQBv0itcTUxN5aKI68gz7g5ozAta0JmRiZB/iFsWf4np/bmdmEamhiw+8qfkvMyFSzoNqgrrvfcmdhbek10afKvhzfDJs6UnG/auY9NO/fh0LEty+bJHrIpTdKcbpCorYNav0HI6xuQ6e9H3MKZZEXkdOHL6Rsgb1byFwzdDTulzpUbNCEzLISYYf0+WmvY6fso6WlRYXJ3VEz0SPAIwG3AClICc5yCirEu6uVMpOLU3T8LNcvc+tDoek7P2j8mfQHITErFpfdSqv02lAaXfiM9NpGIi4/wXnrgo3WWlE/tFlZWVqZOnTrcuHGDbt26ScJv3LhB165dZcaxt7dn0aJFpKSkSCa53rhxAzMzM8qV+7SXoPzIxcTEfJf7J6emprJy5Upu3LjBq1evSEtLw8zMjA4dOjBjxgz09PRk7tA0YMAAfHx8uHTpEurq6owfP57JkycD8Pr1a/744w/u3LlDUFAQioqKWFpaMmDAAMaOHYucnBz+/v7Url2b7du3s2PHDp48eULZsmVZvnw57doV3IFmTe1xX7JYPhqlb6iWVEz/drZ+2SwX/LUlFJubT3Z8bQnFJm7w0K8todi4Pjb9sNF/BHuv7aWW1sZaJXv2TXi6uUDYiRMnGD16NGvWrKFBgwbs2rWLffv2cf/+fSwtLVm8eDEuLi6cOZPTIxEbG4udnR1NmzZl+vTp+Pj4MH78eH755ZdS35nvu225qqiosGDBAhYsWFCozfnz56XOnz17VohlDuXLl+f334s3Tb1y5cpcuXKlWLYCgUDw/43S2KGpR48eREdHs3r1asLCwqhevTpHjhyRrN4IDQ3Fz89PYq+jo8PJkyeZPn06rVq1QldXl/HjxzNhwoRSUCPNd+tcBQKBQPDfpbQ6w0aMGMGIESNkXtuyZUuBMGtray5evCjDunQRzlUgEAgEX5zvfW9h4VxLmXLlyhETE/O1ZQgEAsF/GvE9V4FAIBAISpmsUusY/m8inKtAIBAIvjjft2sVzlUgEAgEXwEx5ioQCAQCQSkjuoUFAoFAIChlvm/XKpyrQCAQCL4CGd+5exXO9Suj843MRzfN+NoKik+0wtdWUHzKyet82Og/wre0paD2nr++toRio11r+teW8FX4vl2rcK4CgUAg+AqICU0CgUAgEJQy2d9521U4V4FAIBB8cUTLVSAQCASCUkYsxREIBAKBoJT5vl2rcK4CgUAg+AqIlqtAIBAIBKWMGHMVCAQCgaCUEbOFBQKBQCAoZTKFcxUIBAKBoHT53ruF5b+2AIFAIBD8/yMrO7tEx6eSmprKjBkzqFixIubm5vTr14+goKAi4+zZs4eOHTtSvnx5LC0t/6+9+w5r6mrgOP4NewuIgAiKKOJkiHvPttg6Wveqs1qt1tFW6wDFvd5q1bqteyHWWVctDqgTFbeAisqeggICgeT9A41GdqUE8Xx88jzm5NybHyHk5Jx77rl88cUXXLhwoVDPJ3quxejJkyc4OTlx+vRpXFxcCr1d0wlf4divLdrl9Im6/pC/3TcTH5T/L926cU3aePSnvH0lkmMSubLmCDe3+yjVsXdrSPMfe1CusjlJT2PwW7SXByf8FY9XauRAw5GfY17PFkNLU45PXMsdb1+lffzwdHuuzx+0+S8SA8OpPaoTuubGJAaFc9VjO7GXA/PMbFzTmgZzB1HeuRoZickEb/fh9tIDSnVsv2xKrdFfYGRnifTFS6J873Bt1k7SYpMAqNavDXY9W1KuRiUkahISbj/h5mJvYi8H5ft61fu6Ay4jO6FvbkxCUDi+ntuJyCdr+ZrWtJ49CAvnaqQlJnN7uw9Xfn2TVc/cmBbu/TCva0u5qpYE/uHHqYnrcuzHaein1BvYHkNrM9KeJfPo5FXOz9uNNDU937y56T6+N+36fYJ+OX0eXA9mk/s6woND86xvbG5C/+mDqVrHDsuqFfH94yxrf1yhVEddQ50uo7vTqkdbTCxMiXwUzq4F27h59nqR8wFof94N3a/6oGZqStbTx6SsW0nmnZsFbqdmVQnjXzeABBJ6uCnKJSam6A//Do1q9qhZWZN++iQpSxf8q2z/ln/ALTbv3MfdwAfExMUzZ+pEun3esUQzmA/6jIqjuqJlbsLLoFCeePzOi8v3cq1r2LQOFUd0Rt/ZHnUjPdJDIonacITY3W8+H0zcGmPx9afo1a2KmrYWL4NCCV++j8STV0rqRyrxQeEpU6Zw9OhRNm7ciImJCdOmTaN3796cPXsWdfXcFyT38/Pjyy+/ZMGCBejp6bFq1Sq6d++Or68v1apVy/f5ynTPddSoURgbG2NsbIyZmRlOTk5Mnz6dlJQUVUdTaDjqCxp844aPx1Z2fOFBavxzeuz4GU19nTy3MbKpwFdbfiTCP5htnaZz+bdDtPP8Gnu3hoo6FetX54vfxnBv/z9sc5vGvf3/0Hn1WCyd37whtPR1iAsM4/TMbUhf5v5hv9r1O1a7fsc+p+zbma+XAJAW/4IGswZwe/khjn4ynTj/YNru+Am9SuVz3Y+GgS7tdv9MWuxzjnfywN99G7VHfU7NkW8+SCs0tKfp8lGEePlypM3PnB26lHI1KtF85WhFHYtmtXhy6CJ/957P8S9m8uJhJO12TsKwqkWer5d958a0nDmAqysPsdttOpFXg+m89ScMrHLPqmmgS9cdP5Ma+5w9X3hwzmMb9b/9HJcRb7Kqa2mQlvAC/1WHib7+INf91OjWlOZT+3BlxUG2t53EX+PXUKWtEy09B+aZNS+dv/2STt90ZfOM9UzvPInn8UlM3TETnXzeJxpaGrxIeM6h1X/wICA41zo9f+xHhwGfsmXmBiZ1+J6/d5xg4rrJVKlTtcgZtVq2RX/EWF56bSfp+2+Q3ruDkedC1CqY57+hhgaGk2cgvXMjx0MSTS1kz5N46b2TzKDcG5P/WmrqS6rb2fLz+JHoaGuX+PObdmlOlVlDiVi+j1uf/MAL/0AcdkxHq5JZrvUNG9Qk9d4Tgkcs5lbb8URvPUHVRaMo/2VLRR2jpnVI+ucWgQPncuuTH0j0uUaNjZMwbFSrpH4sZMiLdHsfSUlJbNu2jVmzZtG2bVucnZ1Zu3Ytd+7c4cyZM3lut379ekaMGIGTkxP29vb88ssvGBgYcOrUqQKfs0w3rgBt2rQhMDCQgIAApk+fzsaNG3F3d/9X+5JKpcWcDuoP+4zLqw4TfOwK8UFhHJ+wBi19HWp1a5bnNk4D2pEcnYjPjK0kPIjg1q4z3PX2o8GIToo6rsM+I/TCXS6tPETCgwgurTxE6MV7uA77TFEn5PQN/BZ5EXz0CnJZ7m/e1NgkUmOTSHt1s/7UlecPI7Fq68gjL18e7jzD8wcR+E/fysvoRGp83T7X/VT9qhkautpcGL+GpMAwQo9e4e5vR6j1VoNl5mrPy8gE7q8/TkpoLPHXHhL4+0nK13/zheD8mNUEbfqLZ7ef8OJhJJd/3oQ0OY2KbR3zfL2cv3Hj/l5f7uw6w7MHEZzz2EpqTCL1Buae1eHLZmjqavPXxDUkBIbx8NgVrq4+gvM3b7K+CIvj3Ixt3N/rS1pi7l/WKrraE3X9AYF//MOLsDjCzt8lcJ8fli75f+PNzWfDvuDQ6j+4cuwiYUFPWT1xOTr6ujTr2irPbeLCYtk6cyPnvE+TnJica52WX7Xh8Or9BPhcJSY0mlPbTxBw+hqff9O1yBl1vuxF+qnjpJ84QlboE1LX/IosIQGdTvnvS2/ISDJDHpHhdybHY7KYKFLXLif91HHkL54XOVNxaNWsEeO/HcwnbVsiUSv5q1hVHNGZOK/TxO48RdqDcJ5M34A0+hkWX3+aa/2IFfsIW7SL5Cv3SX8aTczWEyQcvYhppyaKOk88fidy5X5SAh6Q/jiK8F+8SLn5CJPPGpfUj4W8iP/eR0BAAFKplHbt2inKrK2tcXBw4NKlS4XeT0ZGBmlpaRgbGxdYt8w3rtra2lhYWGBtbU3Pnj3p2bMnf/75J3v27KFt27ZYW1tTvXp1Bg0aREREhGI7X19fjI2NOXnyJO3ataNChQr8/fffyOVyVqxYQf369TE3N6d27dp4enoqPefTp0/p1q0bFStWpHHjxpw+fTrXbBKJBANzYx6fu60oy0yXEnYpECtX+zx/Jqv69jw5d0up7PG5m1g4VkVNI3t4o2L96kr7BXh89la++y2Ihp42Vbo24eGus5g6ViXyrHKGqHO3MGuQ+/7NXKsTcymQrLQ3X1AiztxCr6Ip+jYVAIi9EoSOuTGVOmYPqWubGlClaxMi/s7Zo3lNTUsDdW1NMhJTc39cUx3zelV5+s7r9fTcLSrmkbVi/epEXFbO+vTsLQwsTTF6lbUwIq4EYVa7ChavGlMDq/JU7Vifxz55/zy5MbexwMTclFvnAhRl0vQM7l++Qw3XmkXa17s0tDTJSM9QKstIy8ChQRF7MBoaaFSvgfS68rCi9PoVNGrVzXMzzYZN0GrYjJS1vxbt+T4SEk0N9B2rkXQ2QKk86dwNDBoU/nevbqhHZlL+I3bqBrpkJuX+Jey/ICvi7X3ExMSgrq5O+fLKo1UVKlQgJiam0PuZM2cOBgYGuLm5FVi3zDeu79LR0UEqlZKRkcGUKVPw8/Njz549xMfHM2zYsBz1Z86cyfTp07ly5QoNGjRg1qxZLF68mAkTJnDx4kU2b95MpUqVlLaZM2cOI0eOxM/PDxcXF4YOHUpycs43rZpa9sufGpekVJ4al4R+hbyv86lXoRwp72yTEpuEuqYGuqaGAOhXMM51v3r57Lcgtl82Q01Lk/C/A1DTUFccB33tZWwSuubGuW6ra25M2jt5Xt/XNc/OFHf1Af+M/o3mK0fT98lmetxeg0Qi4cL4NXlmcprck8yUdMJOXsv9eU0NUdNQz/laxCahVyH3rHrmubx2r37Worx+wYcucmGRF9293Rn9aDNDLv1K/P1Qzs/bXeh9AJR79ZomxSUqlSfFJWGcx89QWDfPXcdtWGcq2lkhkUio28KJhp81wdjcpEj7kRiVQ6KugexZglK5LPEZaiamuW9jYorB2J9I/t9cePnyX/8MZZmGqSESDXWk7/ytSWMT0czjb+1dxh1cMWpRj5jtJ/OsYzH4M7QqlifO++z7xC2S4hgWnjNnjuLQX143X1/fXLcFkMvlSCSFG41YvXo1mzdvZtu2bRgZGRVY/6Oa0HT16lW8vb1p3bo1Awe+Oe5la2vLL7/8QqNGjQgPD1dqLCdPnqwYSkhOTmbVqlXMnz9fsb2dnR2NGjVSep7Ro0crvtl4eHiwe/dubt26RatWrdDV1VXUUxz7fXcmnESSoyiHHJtIXu3qzQPyXPZb8I7zVr1/W8KOXyXj1RBjzt1Lcj7n25HfeUzyTrmRvRUNZg/k1rIDRJ65ia65MS7ufWm0cCgXxq3NsT+HYZ9iP6Adf/eeT2ZyAR/Oub1eRckqyb08P1ZNatLw+26cmbaZ6IAHlLO1pNXMATT+oTuX/rcvz+2ad2vFsHnfKu4vGjI390xFzJObrTM38s2C0Sw+tRy5HKKfRHF2rw+te7YreOPCyiOj4Y/TSTt6kMzAu8X3XGXVv/xbNmhYk+q/TeCJ+0ZSAnKfG2DSqQk27oN4MOoXMsJjiyNtoRTHIhKjRo2iV69e+daxtrbmypUrZGVlER8fj5nZm2PVcXFxNGuW9yG411avXs3cuXPZu3cvrq6uhcpW5hvXU6dOUalSJTIzM5FKpXTq1IlFixYREBDAwoULuXXrFomJiYoPqbCwMKXG9e1Zv4GBgaSnp9O6det8n7NOnTqK/1esWBGA2NhYpFIpWVlZOerrVTDmReSbb/x65Y1y9Jzelhqbs2erZ2ZEljSTtGfZDV9KbCL67/Rqsvf7745bmdSpTHlnOwIWeJGe8AJZZpaix/majplRjt7say9jEtF9J4+2Wfb2abHZmeqO7UJ8wCPurf4TgMR7oWS+TOeTAx7cWLiX1Ig3r5HDsE9xmtyD0wMWEx/wKM/cL19lfbfHqWuW92ucGpPztdN9lfVlEV6/pj/1JOjQBe7uPgNA/P0wNHW1abdoGJeX7Ueelftg19W/LvPg+pvZzxpamgAYVzAhITJeUW5kVo6kfN4nhfEi4Tm/jFiAprYmBsaGPItOoM/PA4kNjS7SfuTPk5BnZebopaoZmyBLfJbrNprOrmjUc0K336BXJRIk6uqYHvqblFXLSD9++N/8SGVKZsIL5JlZOXqpmmblcvRm32XQqCY1t00nbPFuYraeyLWOSacmVFsxjkffLy/RmcJQPOe5li9fPsdQb26cnZ3R1NTk9OnT9OzZE4Dw8HACAwNp3Dj/48wrV65k/vz5eHl50bRp00JnK/PDws2aNcPX15crV64QHR3N9u3b0dPTo3v37ujp6bF27Vp8fHzw9vYGsg9Yv01fX1/x/8L2EjQ1NRX/f7dHKZPJlG7JMYlUafnmmJS6tiaVGjkQcTX32Z0AEdeCqdxC+ThWlZZ1ib4Zgiwzu/GOvPZAab+v6+S33/xU79+O5KcxRJ27jUyaRcLNECxbKe/fsmVd4vxz33/c1QeYN3ZATfvNa1OxVV1SIxNICc3+tqyuq5WjwVHcf2vopuYIN5x+7smZgUsKPAVHJs0i5lYINu+8FjYt6xKZR9bIaw+wauSA+ltZK7esS3JUAs9DC//NXkMn588jk8kKHIZKS0kj+kmU4hYeHMqzmATqtXRS1NHU1sShYW2Crt4vdJ78SNOlPItOQF1DnUZuTbl68nLRdpCZSeaDIDRdGigVa7o0IPPe7Vw3SRw9mKSxwxW3lzt+R56WRtLY4WT45T5P4WMjl2aScvMh5Vo5KZUbtXQi2T/v371h49rU3O5O2C9eRG04kmsd087NqL5iHI/GryDhz8Kdu1mc5HJ5kW7vo1y5cgwcOBAPDw/OnDnDjRs3GDlyJHXq1KFNmzaKel26dFGaQ7N8+XI8PT1ZuXIl1atXJzo6mujoaJKSCv5SW+Z7rnp6etjZ2SmVBQcHEx8fj7u7O7a2tgAcOnSowH05ODigra3N2bNnCzzHqbCubTxO4zFdSXgYwbNHUTT5vivS1DTuHTivqPPZ0pEAHJ+QPTR6Y7sPLoM60mbGAG7u8KFSgxrU6dGKP8f+9ma/v5+g997pNPquMw+O+1P9swbYNK3F7u6zFXU09bQxts0+hUWiJsGwUnkq1K5MWmIKLyLe9JA0dLSw/aoZd1e9+SO9v+4YTZePIj7gEbGXg7D/uj26liYEb/0bAOcpvSjvXI2/e88H4PH+89Sb+CVNl43g9rKDGNlZUmdMZ27+8odin+F/Xafx4mHYf90+e1jYwhhXz4HE3wwhNTw7T61Rn+M0uSfnx67m+aModF71SLPSMpC+yH1oOGD9MTouG0V0wCMi/YOoO6A9+hYm3N6enbXp5F5YOFfjQN/srEEHztNo/Jd0+GUEV5YfxKSqJa6jO3N52R9K+zWrXRkALUNd5HI5ZrUrkyXN5Flw9sS4kFPXcfnGjZibIURff0g5Wwua/NiDkL+v59lrzcvxjUfoOqYHEQ/DiXwUwZdje5Cemsb5g+cUdUb98j0AqycuV5RVqW0LgK6BLnKZjCq1bcmUZhIeHAZANWd7TC3L8+ROCCaWpnSf0Ac1NQmH1+4vUj6AtP1eGPwwjczAe2Teu422WxfUTMuTdjT7b0tv0Ddo1KjF82kTAch6EqK0vczeAeSyHOXqdtUBkOjpoyaXZ9+XSskKfVLkjP9GaupLnoZl/07lMjmR0THcD3pIOSNDKloWcJpRMYhcd5hqy78nOeABLy7fw+LrT9GyNCF6a/YxVJsp/dF3tud+75lA9nmuDtumEb3lOPF/nEPz1SiMPEtGZkL2yItp1+ZUWz6Op7O28OLiXUUdmTSTrDxmlhe3zBI+03XevHmoq6szZMgQ0tLSaNWqFWvWrFE6xzUkJERp5HL9+vVIpVKGDBmitK++ffuyevXqfJ+vzDeuubG2tkZbW5v169fzzTffEBgYyLx58wrcztDQkG+//RZPT0+0tLRo3rw5CQkJBAQE5DoZqjCurD6Cho4W7ecMRsdIj8iAh3j3X4g0JU1Rx8hK+Xy256Gx/DFoCW08BuA0oD0p0c/wmbmV4GNvhnUirgZzZMxKWvzYk2YTupP4JJoj360kKuChoo6Fox29vaYp7jf/oQfNf+jB7b3nOPHDmwURHDo3QUNPm0d73nyQPzl0CS0TQ+qO65q9iERgGGcGLCblVSOoY26Mge2bDx7pi5f49FlAw3mDcTs2i4ykVO6tPcr9tccUdR55+aJhoEONIR2pP6Mf0ucviT5/l2tz3kwAqjG4A+paGrRcO1bpNXm45xwXJ+RcxAEg+PAldEwMafh9V/TNjYkPDOPwoMW8eJVV38KYclXeZM148ZKD/RfQes5geh+ZRXpSKtfXHeX6umNK++17Qvk9Y9exPs9DY9nSbAIAV5YfALmcJj/2wKCiKS8TXhBy6joXF3nlmjM/h9fsR0tHi8Gzv0HfyICHAcHMH+BJ2lvvk/JWOWcyzz+2VOm+a8dGxIbGMK5F9hc2TW0tev7YD3MbC9JT0wg4fZVV45eR+jz32df5yfA9TYpROXT7DETNtDxZT0J4PmMystjsIWaJaXnUKloVeb/GKzYq3ddq3Jys6EgSh/Yp8r7+jdv3gxk6drLi/m8bt/Pbxu10devA3Ok//OfPn3DoHzRMDKk0rgea5ia8DHxK4IC5iuOjmuYm6NhaKupX6NUWdT0drEZ1w2pUN0V5emgMAY2zj+VbDPwUNU0NbGcPw3b2m8+u5+dvc6+Hx3/+M0HJL9yvo6PD4sWLWbx4cZ51bt26le/9opAkJiaW2dWTR40aRUJCAnv27Mnx2B9//MGsWbOIjIykTp06TJs2je7du3P48GFatmyJr68vnTt35uHDh0pj+jKZjF9//ZXNmzcTERGBubk5ffr0wd3dPc8VmoyNjdmyZQtdu+Y8329Dve/+mx++mFlmqjpB4SXkvthKqXRBrfQsaFKQFXUTCq5UShht2aTqCIV2zfFHVUcotJr3iu917Vuvb5Hq77q1q9ieuySU6cb1QyAa1+InGtf/hmhc/xsfa+Pap27RRh523y7aKWyq9lEOCwuCIAiqVdaviiMaV0EQBKHEiYulC4IgCEIxe9/F+Es70bgKgiAIJe59z10t7UTjKgiCIJQ40XMVBEEQhGImjrkKgiAIQjHLEsPCgiAIglC8xLCwIAiCIBQz0bgK/6kP5RfgqP1+lzYrSS7huV84vTTaUb6NqiMU2jV/LVVHKDSjD2jVo/o3l6g6QqEVfcXpvInZwoIgCIJQzETPVRAEQRCKmZgtLAiCIAjFTAwLC4IgCEIxE8PCgiAIglDMRM9VEARBEIqZ6LkKgiAIQjHLkpftK7qqqTqAIAiC8PGRF/Hf+0pPT+enn37Czs4OKysr+vTpQ3h4eKG39/b2xtjYmN69exeqvmhcBUEQhBInk8uLdHtfU6ZM4fDhw2zcuJGjR4/y4sULevfuTVZWVoHbPn78GA8PD5o2bVro5xONqyAIglDiSrLnmpSUxLZt25g1axZt27bF2dmZtWvXcufOHc6cOZPvtlKplGHDhjF9+nRsbW0L/ZyicRUEQRBKXEn2XAMCApBKpbRr105RZm1tjYODA5cuXcp329mzZ1O5cmX69etXpOcUE5pKGceBHag/shP65sbEB4dzznM7EZcD86xf3sGaNrMHYelcjbTEZG7t8OHyrwcUj+uZG9Nqej8q1LXFuKol9//w468f1into/rnjWgw6guMq1igpqlOYkg01zce5563b5Gymw7oRIURX6FhbkJ60FMiZq8n9crdXOvqN66L2bCu6DrVQN1Qn/QnEcT/fohne08p1ZNoalBhTG9MvmyLhrkpmXGJxG3YT/zmw0XKlhcP94kMH9YfE5NyXL58nbHjpnH3blCe9Vu3asrfp7xzlNep14rAwIcAfD2wF79vXJqjjr6hHenp6QVmqj6oAw6jP0fX3JikoHCue2wj7lLe74FyNW2oP28Qps7VyEhM5uE2H+4u3a+8z8EdsR/aET3rCqSGx3Fv+UEe7/VTqqNhoEu9yT2x+aIRWiYGpEbEc2u+F6GH8//weZv14E+w/a4zWubGpASGEei+hcRL93Otq6atSa1FwzF0rIq+fSUSLwdy9atZOepJNNWxm/AVFXu2QtvChPTYJJ6sPkzohuOFzpUb80GfUXFUV7TMTXgZFMoTj995cflernUNm9ah4ojO6Dvbo26kR3pIJFEbjhC720dRx8StMRZff4pe3aqoaWvxMiiU8OX7SDx55b1yFoV/wC0279zH3cAHxMTFM2fqRLp93rHEnr8oSnKFppiYGNTV1SlfvrxSeYUKFYiJiclzOx8fH/744w/8/PzyrJMX0biWIvadG9Nq5gBOT99MxJUgHAd2oOuWn9jefjIvIuJz1Ncy0OXLHT8TfjmQ3V94YFKtIh3/NwJpajrX1x8DQF1Lg5fPXuC/6jB1+7XN9XnTniVzeflBnj2MQJaZRdX2LnRYNJyX8c95fPpGobKX+7wFVh7fEO6xmtQrdzEd2AnbTTMJ/uQ7pBGxOerrudYiLfAJsWv/QBqTgGGr+lSaNwZZupSkQ2cV9Wx+/QlNKzPCp64kPSQCjQrGqGkXzwLyP/04mgnjRzJ0+ASCgh4yfdoEjh/dRe26rUhOTsl323pObUhISFTcj41V/v2kpKRSo2YzpbLCNKw2XZrgMnsgV6dsJvZyIPaDOtBqxySOt55EanjO94CGgS6t9/xM7MX7nHJzx7B6RRotG0lWajqBa48CUO3r9jhO74P/jxuIv/YAU5dqNFwynIzEFCL+ug6AREOdNrt/JiMphfMjl5MakYCelSmy9MwCM79m0bUpDnMGcf/njSReCsR6yCe47JrChZYTScslO+pqyNKlhP5+ArP2LmgY6eW633prxqFTqTx3f1hHakgUWhXKoa7zfu8B0y7NqTJrKI+nrOPF5XtYDHbDYcd0brYZR0Z4XI76hg1qknrvCRGrDiCNfka5Ns5UXTQKWbqU+P3ZX0KNmtYh6Z9bhC7cSWZiMmZftaLGxknc6+6RZ6Nd3FJTX1LdzpYubu2ZOvt/JfKc/1ZxHEedM2cOS5bkf+GDw4fz/iIul8uRSCS5PhYfH8/o0aNZv349xsbGRc720Teuo0aNYteuXTnKz507h6OjY4lmqT/cjXvevtzZdQaAszO2YtvGkXoD23N+oVeO+g7dmqGhq83JCWvISpcSHxSGSXUr6n/jpmhcX4TFcXbGNgDsP2+U6/OGnVfuXQb8foJa3Vti1cih0I2r2fBuPNv3N892nwQgcuY6DFu5YtrfjejFW3PUj121V+l+wo5j6Dd1pNxnzRSNq0FLFwyaOxHYZgRZz54DIA3P+1tmUX0/djiLFv/G/v3ZjdCQoeOJDL9B3z5fsn7D9ny3jYmJIz7+WZ6Py+VyoqNzfqkoiMNIN0K8fHm04zQA16ZvxbKtE9UGdeDWvD056lf5Kvs9cHncGrLSpCQFhmFkX4kaI90UjattjxY82nGapwcuAJDyNJbyztWoOaazonGt2qcV2mZG+Hw5C5k0e4JHaljORiY/Vb79nIg9Zwnfnt2bC5y6CbO2TlgP/oQHc3P+jclS07k3aQMABrUqY5BL42ra2hHTVvX4p/H3SBNeAJAWWvTX9V0VR3Qmzus0sTuzR0qeTN+AcRtnLL7+lND5O3LUj1ixT+l+zNYTGDWri2mnJorG9YnH70p1wn/xwri9KyafNS6xxrVVs0a0apb9dz5t7i8l8pz/VnH0XEeNGkWvXr3yrWNtbc2VK1fIysoiPj4eMzMzxWNxcXE0a9Ys1+3u3r1LVFQU3bp1U5TJZNmnD5UvX56LFy9ib2+f5/OKY65AmzZtCAwMVLrVrl27SPuQyWSFmnWWFzVNdczrVeXJuVtK5U/O3aKia+6/wIqu1Ym4HEhWulRR9vTsLQwsTTGyqfCvs9g0r4NJNUvC8xjOe5dEUwPdutV54XtdqTzZ7zp6rrUK/bzqBrpkPU9W3Dfq2ISXN4MxG9aVmuc3UcNnLRVnjEBNT6fQ+8xL1aqVqVjRgr/+etNLTktLw9f3Ek2bNihw+0sXjhH65Bonj++hTeucf5y6ujo8DL7E40f+HNy/BWfnOgXuU01THRPHqkSdualUHnX2FmYNcn8PmDWwJ/bSfbLS3rwHok7fRK+iKfqv3gNq2ppK7xGAzLQMTJ2rIdFQB6DSZw2IuxJE/bmD6HLjNz47u4g6P3yleLwgEk11DB3tiH8ne/yZmxg3qFGofeTG3K0hzwMeUuXbz2l5fRXNLyzDYe5g1PW0//U+JZoa6DtWI+lsgFJ50rkbGDSoWej9qBvqkZmU/wiHuoEumUnJ+db5WMnlsiLdclO+fHlq1KiR701PTw9nZ2c0NTU5ffq0Ytvw8HACAwNp3LhxrvuuX78+58+fx9fXV3Fzc3OjadOm+Pr6UqVKlXx/PtG4Atra2lhYWCjd1qxZQ7NmzbCysqJWrVqMHTuWxMRExTY7duygUqVKnDx5kqZNm1KhQgUCAwPJyMhgxowZ1K5dGysrK9q2bcvff/9dYAZdU0PUNNRJjVW+bmpqXBL6FYxz3UavgjGpcTnrZz9WrkivgZahLqPubWDMw8102fQDZ2ds48k7H5R5UTcxQqKhTmZcolJ5Zmwimnlkf5dhu4YYNHMiYdeb42halS3Qa1gbnVpVeTJ6PhEz12DYuj7WS8YX8qfKm6WFOQDRMcq9oOiYWCwt8v5iEhkVw+jvfqZX72/o2esbAoMecvLEHlq2ePMHGhT0kOEjfuCrHkMZMHA0aenpnDtzkOrVq+abSevVeyA97rlSeVpsEjp5/D51zI1Je+c9k/bqPaBjnr1N1Jmb2PVpjamTHQAmTlWx69cGdS0NtE0NATCoYo7NF42QaKjjO3AxtxftzR5Onlq4c/q0TI1Q01An450sGbFJaJkbF2ofudGtYo5xIwcMalfhxrBfuD9lE+XbOlFn+eh/vU8NU0MkGupI38kqjU1Es5BZjTu4YtSiHjHbT+ZZx2LwZ2hVLE+c99k863zMZMiLdHsf5cqVY+DAgXh4eHDmzBlu3LjByJEjqVOnDm3atFHU69KlC56engDo6+tTu3ZtpVu5cuUwNDSkdu3aaGnlf2jiox8Wzouamhrz58/H1taW0NBQJk2axKRJk1i37s1koLS0NJYsWcLSpUsxMzPDwsKC7777jpCQENavX69ofPv06YOPjw/16tUrcg6JRJL/GpzvPibJo7wAGclp7PxsGpr62tg0r0NL9/48D4sj9J87hd9JLlkKE0PPtRY2y34kwnMdL28Ev3lATQ3kckLHL0H2IvsyzREz1lJ16yw0zIxzNOb56dv3S1b/tlBxv0vXr3OPXMDrHRT0kKCgh4r7Fy9dxbaKNRMnfouv3yVF2cVLVxV1zl/w56r/Sb4bPYQJEz0KzPru8+d1TOjNBu/cf13/VfndpfvRqVCO9odngERCWmwSj718qTWmM/IsmeI50uKf4//jBuQyOc9uPkbLxAAXzwHcmLWzwMxvhc+Z5T2OrUnUJCCH26OWk/niJQD3p2zC1WsaWhXK5WjMi+RfZjVoWJPqv03giftGUgIe5FrHpFMTbNwH8WDUL2SEv/8wdllU0is0zZs3D3V1dYYMGUJaWhqtWrVizZo1qKu/GZ0JCQmhUqVKxfJ8onEFTp06pfSCNm3aFG/vNzNCq1SpwqxZs+jXrx9r1qxBTS27w5+VlcWiRYtwdnYGsn8x3t7e3Lx5ExsbGwBGjBjBmTNn2Lx5M//7X94TDF4mvECWmZWjx6lb3ihH7/S11NhE9N7pGeqVz94+9Z3eT4HkcpKeRAMQd/cpptUr0XBMl0I1rlnPniPPzEKjgolSeWEaQL0GtbH9fQbRS3eQsOOY0mOZMQlIo+IVDStA+oNQADStKhSpcT18+CSXL78ZttZ+NSnK0qICYWERinLzCmZExxTtWOPlK9fp1atrno/LZDKuXr2JfQE914xX74F3e6naZkY5eqevpcUkKnqor+mUN8p+7NU2WWlSrkxcj/+k39GpUI606GfYDWiH9MVL0l8dx3wZk4hMmoVc9qZxeR4cgYaeDtrlDUmPf1FA9ufIMrNy9FK1zIzeqwFMj04kPSpB0bACpARnr6qjU8nsX+07M+EF8sysHL1UTbNyOXqz7zJoVJOa26YTtng3MVtP5FrHpFMTqq0Yx6Pvl5foTOEPTUkv3K+jo8PixYtZvHhxnnVu3bqV52MAq1evLvTziWFhoFmzZkrj6suXL+fs2bN069aN2rVrY21tzcCBA8nIyCA6OlqxnYaGhlJv9MaNG8jlcpo0aUKlSpUUt5MnTxISEpJvBpk0i5hbIVRuWVepvHLLukReDc51m8irD7Bq5IC6tqZS/eSoBJ6/56QPiZoEda3CffeSSzN5efsBhi2clcoNWjiTejXviRx6jepgu2kGMct3Eb/pUI7HU67eQ9OivNIxVq2qVgBkFHFiU3JyCg8fPlbc7t4NIjIymg4dWinqaGtr06JFIy5c8C/Svp2c6hAVmX+eevVqERmVfx2ZNItnN0OwbK08wmHZqi5x/rm/B+L8g6nQuCZqb70HLFrXJTUygZR33gPyzCxeRiYgl8mp3K1p9mSmVx9wcVeCMKxq8abXCxjaWZKZmlZgwwogl2bx4uYjyr+T3bR1PRL98z61qSCJVwLRtjBROsaqX60iAC/D/t17XC7NJOXmQ8q1clIqN2rpRLJ/3vMMDBvXpuZ2d8J+8SJqw5Fc65h2bkb1FeN4NH4FCX9e+Ff5PhYlvUJTSRM9V0BPTw87OzvF/adPn9K7d2++/vprpk6diqmpKTdu3GDYsGFkZGQo6mlraysNKchkMiQSCT4+Pmhqaio9h45OwZNwrm04xqdLRxEd8IgI/yDqDWiPvoUJt7ZnH7NtNrkXls7V+KPvfAACD56n8fgv6fi/EVxZfhBjO0tcR3fm0rI/lPZrVrsykH3qjlwmx6x2ZWTSTBKCs3tsDcd0ISrgIUlPY1DX0sS2rRM1v2rO2Rk5Z/nmJW7DAax/mUjqjWBS/e9i2t8NDXNTEnZm90YtfvoaPacahAyYDmSf52r7+wzitx8l8cAZNMyMAZDLZGQlZPe6kw6exXxMb6wXjyN62S7UjfSx8hhB0lE/suLfYzjwleUrNjDl5++5H/iA4OBHTJ0yjuTkFHbtfnOO6KbffwVgyNBxQPYM48dPQrl7NwgtLU369/uKbl3d6NFruGIb9+kTuHTpGsEPQjAyMmTMd0NxrFeLMWOmFJgpcO0xGq8YRcL1h8ReCaL61+3RsTTh4dbs90C9qb0p72zHmV7Z74Gn+89T54evaLxsJHeXHcCgmiW1xnThzv/evAcM7CwpX7868VeD0Sqnj8PITpRzsObS92sUdR5sOYX9kE+oP3sgwZv+Qt/GjLo/9uDBZuXzjvPzZM2f1F05hufXH5J4ORDrQR3QtjQlbMtfAFSf1hcjl2pc6zFHsY1+jUpINDXQKm+Ehr4OBnWyJ4kk33kCQNQ+P+wmfEWdX0fzcMleNIz0cZgzmOhDF5EWdXTmLZHrDlNt+fckBzzIPhXn60/RsjQhemv2MVSbKf3Rd7bnfu+ZQPZ5rg7bphG95Tjxf5xTzCWQZ8nIfPV+Ne3anGrLx/F01hZeXLyrqCOTZpKVWDKTmlJTX/L01UiMXCYnMjqG+0EPKWdkSEVL8xLJUFgleZ6rKojGNRfXr18nIyOD+fPnKxrP48cLPmHd0dHx1SkY0bRq1arA+u8KPnwJXWNDGo3tip65MfFBYRwctJgXr84R1Dc3plzlN38gGS9esr//AtrOGUyfI7NIf57K9fVHFafhvNb/+Dyl+3Yd6/M8NJZNzScAoKmvQ7u5QzCoaEpmWgYJDyI4OWEtQYcK/8076U8/1E2MMB/TC40KpqQHPeHxUE+kr443aZqbolXFUlHfpEcH1PR0qDDiKyqM+OrNzxQWTWDL7IZKlppGyEB3rGaOpPrBX8hKSub5XxeJWril0Lnys3jJKnR1dVjx61zFIhJun/dTOse1so2V0jZaWposWuBOpUqWvHyZxt27QXTuMpBjx98sJmBcrhyrVy3C0rICSUkvCAi4Tdt23bniH1BgptBDF9E2MaD2+G7omBuTFBiG74DFitNidM2NMbC1UNSXvnjJ2d4LqD9/MB2PzyYjKYXANUcVp+EASNTVcBjhhmH1odkjJOfv8ncXT6VTbV5GJHC2zwKcZ/bnk7/mkRabSMjuM9xddqDQr2f0wQtomhhSdfyXaFuYkHw/lOv9FpD26nm0zY3Rq2KhtI3Ljp/Rfes93dRnEQB/WWRPpMpKTedqzznUnDeExsfnIU1KIfbYFYLnFOE4cC4SDv2Dhokhlcb1QNPchJeBTwkcMFdxfFTT3AQd2zfv1wq92qKup4PVqG5YjeqmKE8PjSGg8bcAWAz8FDVNDWxnD8N29jBFnefnb3OvR8HH2ovD7fvBDB07WXH/t43b+W3jdrq6dWDu9B9KJENhlfXruUoSExPL9k9YgFGjRpGQkMCePW/OIbx9+zYtWrRg9uzZdO7cGX9/f2bOnElYWBg3btygSpUq7Nixg0mTJuW4qsKIESM4f/48c+fOxcnJiWfPnuHn50eVKlXo0qVLjuffXO+7//xnLA7t1N+/p1hSXMKvqTpCoe0o30bVEQrNVFb4BSVUzUhdWnClUqL+zfwXQShNUjXLF1ypkKpXzv28+7w8eHq52J67JIhjrrmoW7cuCxYsYNWqVTRp0oStW7cye/bsQm3722+/0b9/fzw8PGjYsCG9e/fmn3/+oXLlyv9xakEQhA+HXC4v0u1D89H3XFVN9FyLn+i5/jdEz/W/8bH2XKtaF7xYy9tCwoo20VDVxDFXQRAEocR9iL3RohCNqyAIglDi3nfVpdJONK6CIAhCiRM9V0EQBEEoZiW9/GFJE42rIAiCUOI+xFWXikI0roIgCEKJE8PCgiAIglDMxPKHgiAIglDMRM9VEARBEIpZWW9cxQpNgiAIglDMxNrCgiAIglDMROMqCIIgCMVMNK6CIAiCUMxE4yoIgiAIxUw0roIgCIJQzETjKgiCIAjFTJznKvzndu3aVei6ffv2/Q+TlG3Xr18nJCSETz/9FH19fVJSUtDW1kZDo/T9mUdFRbFx40YCAwMBqFGjBsOGDaNixYoqTiYIxUOc5/oB++KLL5BIJIWqe/jw4f84Td6sra2V7mdkZCCVSlFTyx44kclkaGpqoq2tTWhoqCoi5srPzw8dHR0aNGgAwI4dO9i2bRs1a9Zkzpw5GBgYqDhhtpiYGPr27cu1a9eQSCRcu3YNW1tbxo8fj7a2NgsXLlR1RCWnT5+mX79+VKpUCVdXVwCuXbtGWFgYO3bsoF27dipOqCw1NZVbt24RGxuLTKZ8JZcuXbqoKFXu7ty5w+bNmwkJCWHlypVYWlpy5MgRbGxscHJyUnW8j0rp+0orFFqtWrUU/5fJZOzduxdzc3OlD6zo6Gh69eqlqogAhIWFKf5/4sQJFixYwPz58xWNlr+/P9OmTeOnn35SVcRcTZkyhZ9//hmA4OBgJkyYwMCBA7lw4QIeHh788ssvKk6YberUqZibmxMSEkLdunUV5d26dWPSpEkqTJa7yZMnM3DgQBYuXKj05XDy5Mn8/PPPXL58WYXplJ05c4Zhw4aRkJCQ4zGJRJJruar4+PjQt29fOnTowLlz50hLSwMgJCSEnTt3snPnThUn/LiInmsZMWXKFLKysnJ8YP3888/I5fJS03tp1KgRK1eupFGjRkrlly9fZvTo0fj7+6soWU42Njb4+vpia2vL//73Py5fvsyePXvw9/fn66+/5u7du6qOCIC9vT0HDx6kdu3aWFtb4+fnh62tLY8fP6ZZs2ZERESoOqISS0tL/Pz8qF69ulL5gwcPaNmyJZGRkSpKllOTJk1wcXHBw8Oj1A9Zt2/fnr59+zJ8+HCl90FAQAB9+vTh/v37qo74URETmsqI3bt3M2LEiBzDxMOHD2fPnj0qSpXT06dP0dPTy1Guq6ur1MMtDSQSCVlZWQCcPXuW9u3bA2Bubl6qeixpaWloaWnlKI+Pj0dbW1sFifLn4uLCnTt3cpTfuXMHR0dHFSTK29OnT5k0aVKpb1gB7t+/T8eOHXOUGxsb8+zZMxUk+riJxrWMkMvleX5glSaurq5MnjxZqTcVERHB1KlTFcPEpYWLiwuLFi1i9+7dXLhwQfHB9fTpU8zNzVWc7o1mzZrlGPLLyspi2bJltG7dWkWp8jZs2DCmTZvG0qVL8fX1xdfXl6VLlzJt2jS++eYbAgICFDdVa9y4McHBwaqOUSjGxsa59vpv3LiBlZWVChJ93MQx1zJiwIABfP/99zx69EjpWOavv/5K//79VZzujZUrV9K/f38cHR0VvYHIyEjs7e3ZsWOHitMpmz9/PsOHD+fYsWP88MMPVK1aFYCDBw/SuHFjFad7w9PTk88//5xr166Rnp7O9OnTuX//Ps+fP+fEiROqjpfDN998A8CsWbPyfAxUd0zz7UZ9yJAhuLu7ExUVRe3atXPMvHZ2di7ZcPno0aMHHh4ebNq0CYlEQmZmJn5+fri7u5eqz4CPhTjmWkbIZDJWrFjBmjVriIqKArKPbX377beMGTMGdXV1FSd8Qy6Xc/r0aYKCgpDL5dSsWZM2bdoUeuazqqWlpaGuro6mpqaqoyhER0ezceNGbty4gUwmw8nJieHDh2NpaanqaDk8ffq00HUrV678HybJnYmJCRKJpMBLopW2CU1SqZTRo0ezb98+5HI5ampqyOVyevTowerVq0vVZ8DHQDSuZdDz588BMDIyUnGSD9vr0y5enzIUHR3NiRMncHBwKFU9V6F4lfbGPzcymYygoCCsra2Ji4tTfMlydHSkWrVqqo73URKNq1DiNmzYwIYNG3jy5AkXLlzA1taWpUuXYmtry5dffqnqeAo9evSgffv2jBo1iuTkZBo1akRKSgopKSmsWLGi1Cx48c8//+RaLpFI0NHRoWrVqpiYmJRwqpzCwsJ48eKF0ilk586dY/HixaSkpNC5c2cmTJigwoQfLrlcjrm5OZcuXcLOzk7VcQTEMdcPXp8+fQpVb/fu3f9xksJZtWoVy5cvZ9y4cXh6eirKK1asyLp160pV4xoQEKDIePjwYQwNDblx4wZeXl6lqnF9ezGR10OZb99XU1PDzc2NtWvXoq+vr7Kc06ZNo2rVqsycOROA0NBQ+vbtS+XKlbG1tWXevHno6ekxcuRIlWV81+zZs6lUqRJDhw5VKv/999+JiIhg+vTpKkqmTCKRYG9vT1xcnGhcSwkxW/gDZ2pqWqhbabFp0yZ+/fVXRo0apTQ5xMnJqdSdh5ecnEy5cuWA7FWFvvjiCzQ1NWnVqhWPHz9Wbbi3eHl54eDgwLp167h+/TrXr19n3bp11KxZk61bt7J161Zu3bqlaNRU5erVq3zyySeK+3v37sXCwgJfX1927dqFh4dHqZvUtmfPnlxPD3J2di41X1hf8/T0xMPDg5s3bxZ4vFj474me6wdu1apVQPYSbdra2qV+0kJoaKjSsOBrmpqaihVlSgtra2suXbqEiYkJf//9N5s3bwbg2bNn6OrqqjbcW+bMmcOCBQuUTruxtbXFzMyMGTNmcPbsWdTV1Zk0aRKLFy9WWc64uDhsbGwU9/38/Pj8888VX7Lc3NxYsmSJquLlKjY2FjMzsxzlpqamxMbGqiBR3oYMGUJaWhpt2rRBQ0MjxznOpWlp0Y+BaFzLgKysLCpXroyfnx81a9ZUdZx82dracuPGjRwTQU6ePImDg4OKUuXuu+++Y+TIkejr62NjY0Pz5s0BOH/+PLVr11ZxujcCAwNzXeSgYsWKioXxa9euTUxMTElHU1KuXDkSEhIUDey1a9cYNGiQ4vG3F+0oLaytrTl//jy2trZK5f/880+pO3d00aJFqo4gvEU0rmWAuro6NjY2ZGRkqDpKgcaMGcOkSZN4+fIlcrmcy5cvs3v3bpYvX87KlStVHU/JkCFDcHFxITQ0lLZt2ypmDVetWpVp06apON0bDg4OLFmyhBUrVih6K+np6fzvf/9TfGEJDw9X+cIXrq6urFq1it9++40DBw6Qmpqq1Nt+8OABlSpVUmHCnAYPHszUqVORSqW0atUKyF6ty9PTk/Hjx6s23Dv69eun6gjCW8Rs4TJi586d7Nu3j3Xr1lG+fHlVx8nXli1bWLx4MeHh4QBYWVkxefJkvv76axUn+zD5+/vTp08fZDIZtWrVQiKRcPfuXdTU1NizZw+urq7s2rWL2NhYvv/+e5XlvH37Nl27diUpKQmZTMbEiROVJgSNGDECQ0ND/ve//6ksY248PT1ZvXq14surlpYW3377rcqPYecnOjo6x5ftt4fkhf+eaFzLiGbNmvHkyROkUilWVlY51u89f/68ipLlLT4+HplMRoUKFVQdJU/Pnj3j1KlThIWF5fiwmjx5sopS5ZSSkoKXlxfBwcHI5XIcHBzo3r07V69epU2bNqqOpxAfH8/FixexsLDIsdzl63OI3x2CVZXMzEx8fHxo0KAB2traBAYGKl7b0nK5wbclJSUxefJkDhw4kOsoVmla8OJjIBrXMmLBggX5Pv760mmqNmXKFHr37l2qlo3Ly5UrV+jZsyc6OjrExcVRsWJFoqOj0dbWxsbGplR+YYHstZp37NjB9u3bCQ0NFR+q78HCwoLLly9TpUoVVUcp0Pfff8+1a9fw9PRk4MCBrFy5koiICNasWcPcuXPp2rWrqiN+VMQx1zKitDSeBbl69Spr1qzB3t6e3r1706NHj1L7weXh4UGvXr1YuHAhNjY2HD58GD09PYYNG8bAgQNVHU9JVlYWR48eZdu2bfj4+FCnTh2GDh1aaj9Qjxw5wm+//aaYcOXg4MDo0aPp3LmzipMpq1u3LiEhIaX2Pfq2U6dOsWHDBpo1a4a6ujrOzs589dVXWFpasmnTplL7XiirxHmuZUhaWhoHDx5k2bJlJCYmAtkXSi5Nl5s6efIk169fp2fPnnh5eeHi4oKbmxubNm1SZC4t7ty5o7iMn5qaGunp6Zibm+Pp6VngSEFJCQ4Oxt3dnZo1azJ9+nQcHR2Ry+WsXbuWcePGlZoh1retWLGCoUOHYm9vj6enJ56entjb2/PNN9+wYsUKVcdT8vPPPzNt2jSOHDlCWFgYz549U7qVJklJSYrjqkZGRooRi4YNG5aqC9B/LETPtYx49OgRXbt2JSUlhaSkJLp164axsTEbN24kKSmpVH1o2dra8tNPP/HTTz8REBCAt7c3ixcvZsqUKYqLDpQGby/Mb25uTmhoKA4ODujr65eKnG5ubty9e5euXbuyadMmWrRoAcCyZctUG6wAK1euZPHixUqn4QwcOBBXV1fmzZvH2LFjVZhOWa9evYDsfG9fWEIul5e6hfttbW15/PgxNjY21KhRg3379uHq6srhw4dLxfKXHxvRuJYRU6ZMoV27dvzyyy9KQ1hubm589913KkyWv8zMTNLT08nIyCh1C2A4OTlx7do1qlevTosWLZgzZw4xMTF4eXlRp04dVcfj8uXLDB8+nEGDBpWq824LkpKSQsuWLXOUt2zZkpSUFBUkytvhw4dVHaFAt2/fplatWvTr1487d+7QsmVLxo8fT58+fVi/fj0ymazUjLR8TETjWkZcunSJU6dO5WigrK2tS0Uv620PHjzAy8sLb29vnj59SsuWLZk9ezZdunRRdTQl7u7uvHjxAoDp06fz7bffMnnyZKpVq8Zvv/2m4nTZSzJu3boVNzc3KleuTJ8+fejRo4eqYxWoU6dOHDx4MMci/YcOHcLNzU1FqXL3ejSgNGvVqhWBgYGKL9G9evVi+fLlXL58mevXr1OtWrVS8WXwYyMa1zJEKpXmKAsLCytVl55r06YNN2/epG7dugwdOpSePXtiYWGh6li5cnFxUfzfzMwMb29vFabJydHRkSVLljBnzhwOHDjAtm3bmDFjBjKZjJMnT2JpaYmxsbGqYwIoLRBiZ2fH0qVL8fX1pWHDhkD2ubpXrlwptaMskZGRuZ6O9XrVLlV6dx3h8+fPk5aWhq2trTi3VYXEqThlxNChQ9HT02PlypVYW1vj5+eHqakp/fr1w9bWttSsfjRr1ix69+5d6pY6LCsePXrE1q1b2b17NwkJCbRq1apUfCnIbfH73EgkEm7cuPEfpym8yMhIhg8fzvnz5xUXUH/72GtpOOZqYmJCUFCQ4nzx13//pXEy28dENK5lRGRkpOI0hsePH+Po6MijR48wNzfn6NGjuS4+LuTUrFmzQtctree5QvapOcePH2f79u3s2rVL1XE+WIMHDyYhIYElS5bQrl07vL29iYmJYf78+cybN4+2bduqOiKmpqYEBQUp/sZF41o6iMa1DHn58iXe3t7cvHkTmUyGk5MTPXv2VPkVXCZNmsSMGTPQ19dn0qRJ+dZV9eLjRZn48aGcWyz8e/b29opTxmxsbDh9+jTVq1fnxIkTLF68mFOnTqk6IiYmJrRt2xYtLS0g+3zX5s2b5/i7L22XyCvrxDHXMkRXV7fULW4AcPfuXcXx4Lt37+ZZ7+3hNlURDeZ/40P6gvW2tLQ0xfWQjY2NiY2NpXr16jg4OHDnzh0Vp8vWt29fpfuvTx8SVEs0rmVEXkN/EokEHR0dqlatipOTUwmnynbkyJFc/1/a3bt3j6ysLOrWratUfvv2bTQ0NEr95f1Kkw/pC9bb7O3tCQ4OpkqVKtSrV49NmzZRqVIlNmzYkOtl/lTh9TWdhdJFDAuXEdbW1mRkZCCVShWXRpPJZIqFEKRSKY6Ojuzbt0+lx1///PNPPvvss1J3TmtuPv30U4YPH07Pnj2Vyvft28f69es5fvy4ipKVLZmZmaSlpZXKxfC9vLyQSqX079+fgIAAevToQUJCAtra2qxevZpu3bqpOqJQSonlD8uITZs24ejoyIkTJ4iOjiY6OpoTJ07g7OzM9u3bOXfuHHK5nKlTp6o05/Dhw7G3t2fixIlcunRJpVkKcufOHVxdXXOU169fP9/el5C7s2fPsn//fqWypUuXUqlSJapUqUL37t1LzRKYqamp/Pjjj8yYMYMZM2YwfPhwbGxsuHnzJj4+Pty+fVs0rEK+RONaRkybNo0FCxbQqFEjNDQ00NDQoFGjRsydO5fp06dTr1495syZg5+fn0pzBgUFMWvWLB49ekSnTp1wcnJizpw5BAcHqzRXbtTU1Hj+/HmO8sTExBznFgoFW7p0qeIavpB9EYfXp2Z5enpy+/btUnMt1/nz57Nz504++eQTunfvzunTp5k4cSJ6eno4OzuX+msmC6onhoXLCEtLS/7+++8cK7Hcvn2bDh06EBUVxZMnT2jatCkREREqSqksKioKb29vxQxnZ2dnfHx8VB1LoW/fvqirq7NlyxbFMHZmZiaDBg0iMzOTPXv2qDjhh6VGjRp4eXkpLjfo7u7OlStXFMPrBw4cYM6cOfj7+6swZTZnZ2fc3d3p3r07kP1F4NNPPyU6OvqDOKQhqJ6Y0FRG1K9fn2nTprF27VrFikfR0dG4u7srhjYfPXqElZWVKmMqsbS0ZMSIEdjY2LBkyRICAgJUHUmJp6cnbm5uuLi40KRJEwAuXrxISkoKR48eVXG6D09SUpLS8f5Lly7RsWNHxX0XFxciIyNVES2H8PBwmjZtqrjv6uqKhoYGkZGRWFtbqzCZ8KEQw8JlxIoVK4iKiqJu3brUq1cPR0dH6tatS1RUlOKKOCkpKfz4448qTprt3LlzjB07Fnt7e77//nscHR05cOCAqmMpqVGjBv/88w+9evUiMTGRZ8+e0atXL/z8/MQKU/+ChYUFISEhAKSnp3Pz5k0aNWqkeDw5OVlxrqaqZWVl5ciioaFBZmamihIJHxrRcy0jqlWrxoULF/Dx8SE4OBi5XI6DgwNt27ZVnN7wxRdfqDhl9gL4+/fvJzY2lnbt2rFs2TI6deqEtra2qqMppKam4uHhwZ9//olUKqV169asXr1aHGd7Tx07dlRMEDp27Bh6enpKvcM7d+5gZ2enwoRvyOVyRowYodTApqWlMW7cOKXFGcTCDEJexDFXoUR98skn9OrVi+7du5faa0y6u7uzceNGevbsiba2Nvv27aNFixZs2bJF1dE+aPHx8QwYMICLFy9iYGDAqlWrFEt2AnTp0oVGjRoxffp0FabMNnr06ELVE+eYCnkRjWsZ4u/vz9mzZ4mNjUUmkyk9VhpWvZFKpYwYMQIPDw+qVq2q6jh5EpNZ/ltJSUkYGBjkeC2fPXuGvr5+qRkaFoT3IRrXMmLFihV4eHhgZ2eHpaWl0ko3Eomk1Fz0uUqVKpw9e7ZULypeoUIFbty4oTT5y9LSEn9/fzGZRRCEQhHHXMuINWvWsHDhQkaMGKHqKPnq3Lkzhw8fZuzYsaqOkicxmUUQhPclGtcy4sWLF3zyySeqjlEga2trFi9ezPnz53FxcUFPT0/p8TFjxqgo2RtiMosgCO9LDAuXERMmTKBOnToMHz5c1VHyld9Fs0vLhbLFZBZBEN6XaFzLiCVLlrB69WratWtHnTp10NBQHpQoDT1CQRCEj4VoXMuID6FHKAiC8LEQjatQoj6kC2ULgiD8W2JCUxkUExODmZmZ4rqupcm7l2rLzMwkKCiIzMxMlV3MXRAEobiJxrWMkEqlzJ49m99//52XL19y9epVbG1tmTFjBjY2NqVmotORI0dylKWlpTF27FilpfAEQRA+ZKWvayP8KwsXLuT48eOsXbtWaZ3e+vXrs3PnThUmK5iOjg4//PBDqbmWpyAIwvsSPdcywtvbm5UrV9KiRQul4eDatWvz4MEDFSYrnLi4OJKTk1UdQxAEoViIxrWMiIqKwsbGJkd5ZmYmWVlZKkiUu5UrVyrdl8vlREdHs3fv3g9iEQxBEITCEI1rGVGzZk3Onz9PlSpVlMr3799fqiYKrVu3Tum+mpoaZmZm9O/fnwkTJqgolSAIQvESjWsZMXnyZEaOHEl4eDhZWVkcOHCAoKAgvL298fLyUnU8hZs3byrdl0qlpKenY2BgoKJEgiAIxU9MaCoj3Nzc2LRpEz4+PqipqbFw4UIePXrE7t27adOmjarjcfbsWfbv369UtnTpUqytralSpQrdu3cnMTFRNeEEQRCKmVhEQigR3bp1o0OHDoplGK9evUqHDh0YOHAgNWrUYMWKFfTq1YvZs2erOKkgCML7Ez3XMiIuLo64uDjF/Tt37jBnzhy8vb1VmOqNu3fv0qJFC8X9AwcO0LhxY5YvX86YMWNYuHAhx44dU2FCQRCE4iMa1zJi8ODBisYpPj6eTp06ceTIESZOnMiKFStUnA6SkpIwMzNT3L906RLt27dX3HdxcSEyMlIV0QRBEIqdaFzLiDt37tCwYUMADh48iJ2dHRcvXmT16tVs3rxZteEACwsLQkJCAEhPT+fmzZs0atRI8XhycnKOC5QLgiB8qETjWkakpaWhr68PwJkzZ3BzcwPAycmJ8PBwVUYDoGPHjsyYMYOzZ88yY8YM9PT0lJY7vHPnDnZ2dipMKAiCUHxE41pG2NnZcfjwYcLCwjh9+jTt2rUDIDY2lnLlyqk4HUydOhVtbW26devGjh07+PXXX5V6qtu3b6dt27YqTCgIglB8xGzhMuLQoUMMHz6czMxMWrdurTjtZcmSJVy6dIm9e/eqOGG2pKQkDAwMUFdXVyp/9uwZ+vr6YmhYEIQyQTSuZUhMTAyRkZHUq1dPsb6wv78/RkZG1KhRQ8XpBEEQPh6icS3DHj16hJWVFTo6OqqOIgiC8FERx1zLiFmzZikuLSeXy+nWrRuurq44ODjg7++v4nSCIAgfF9G4lhFeXl7Y29sD8Ndff3Hr1i1OnTpFnz59mDlzpmrDCYIgfGTEwv1lRGxsLFZWVkB24/rll1/i6uqKiYlJqVhbWBAE4WMieq5lhKmpKaGhoQD4+PjQsmVLIPt6roIgCELJEj3XMqJz584MHz6c6tWr8+zZMzp06ADArVu3qFq1qorTCYIgfFxE41pGzJs3DxsbG8LCwvD09FSs1hQVFcWwYcNUnE4QBOHjIk7FEQRBEIRiJnquZUxkZCRhYWFkZGQolTdv3lxFiQRBED4+onEtIyIjIxk2bBgXLlxAIpEgl8uRSCSKxxMSElSYThAE4eMiZguXEVOmTEFDQ4NLly6hp6fHsWPH2Lx5Mw4ODuzbt0/V8QRBED4qoudaRvzzzz94eXlRo0YNJBIJZmZmNGnSBG1tbebOnSuuOCMIglCCRM+1jEhLS8PU1BQAY2NjYmNjAXBwcODOnTuqjCYIgvDREY1rGWFvb09wcDAA9erVY9OmTTx9+pQNGzZQsWJFFacTBEH4uIhh4TLi22+/JTo6GoBJkybRo0cPvL290dbWZvXq1SpOJwiC8HER57l+4FJTU/Hw8ODPP/9EKpXSpk0bFi5ciK6uLkFBQdjY2FC+fHlVxxQEQfioiMb1A+fu7s7GjRvp2bMnOjo6eHt706JFC7Zs2aLqaIIgCB8t0bh+4JydnXF3d6d79+4AXL16lU8//ZTo6GjU1dVVnE4QBOHjJCY0feDCw8Np2rSp4r6rqysaGhpERkaqMJUgCMLHTTSuH7isrCy0tLSUyjQ0NMSl5gRBEFRIzBb+wMnlckaMGKHUwKalpTFu3Dh0dXUVZbt371ZFPEEQhI+SaFw/cH379s1R1qtXLxUkEQRBEF4TE5oEQRAEoZiJY66CIAiCUMxE4yoIgiAIxUw0roIgCIJQzETjKgiCIAjFTDSugiAIglDM/g/TyoqWdSFirgAAAABJRU5ErkJggg==\n"
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdcAAAFVCAYAAAC9/KUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAADKmklEQVR4nOydd1QVRxfAf/QuRaogoiIqig1Fxd5bFLsJ9t67xlijMcYWE2OsiRq7EY1GYzc27AXBhlTp9VEeSq/fH5iHDx4IBjX6ze+cPYedvXfm7uzw7s7MnVklqVSah0AgEAgEgnJD+UMbIBAIBALBp4ZwrgKBQCAQlDPCuQoEAoFAUM4I5yoQCAQCQTkjnKtAIBAIBOWMcK4CgUAgEJQzwrkKBAKBQFDOCOcqEAgEgo+SGzdu8Pnnn1O7dm0MDAzYv3//G3WePn1K9+7dMTc3p3bt2qxevZq8vPLf7kE4V4FAIBB8lKSkpGBvb8+qVavQ0tJ6o/yLFy/o06cPpqamXLp0iVWrVvHzzz+zcePGcrdNtdxzFAgEAoHgPdC5c2c6d+4MwKRJk94of/jwYdLS0tiyZQtaWlrY29vj5+fH5s2bmTJlCkpKSuVmm+i5CgQCgeD/grt379K8eXO5Xm6HDh2IiooiJCSkXMsSPdcPjHZW/Ic2oVT81GjJhzah1KQpfTzbZZvklt+b8rsmUuXjqVf9j6heP6Yf4RGPN5VbXmX97UtVq/ivy4yNjaVSpUpyaSYmJrJrNjY2/7qMf/iYnqtAIBAIPhVycz60Be8U4VwFAoFA8P7Jy33vRZqamiKRSOTS/jk3NTUt17LEnKtAIBAI3j+5uWU7ygEnJydu3bpFenq6LO3y5ctYWFhQpUqVcinjH4RzFQgEAsF7Jy8vt0yHIpKTk3n06BGPHj0iNzeX8PBwHj16RFhYGADLli2jV69eMvn+/fujpaXFpEmT8Pb25sSJE6xfv55JkyaVa6QwCOcqEAgEgg9BOfRcPT09ad26Na1btyYtLY2VK1fSunVrvvvuOwCio6MJCgqSyevr63Ps2DGioqJo164dc+fOZfLkyUyZMqXcb09JKpV+PCGAnyAiWrj8EdHC7wYRLfxu+JgCX8ozWljrRXCZ5NMq2JRb2e+Dj+m5CgQCgeBTQUQLCwQCgUBQznyAaOH3iXCuAoFAIHj/lFME8H8V4VwFAoFA8N4pLgL4U0E410+E+16P2XXgD7x9A4iNi+fbBbPo3aPTeynbeWZf6rm2Q0Nfh2jPQP5evIt4v4gSdWp0a0LLOf3RtzYlKTSWa2sOE3DufpnyHXvjR/Qrm8jp3Nn8F+dX/66wzNYz+tLItT2a+jpEeAZwdvEuJP4l21mrWxPazh6AobUpiaGxXF7rhu9rdrad3Z/a3ZtSoZIROVk5RD8J4sq6I4R7+Mtkhv6+EJvm9nL5Pj1xi6NTFX+Jo86wjtQf3x1tUwMS/SK4sWwf0Xd9i7XRolktnBcPxtDOktQYKV5bT+K971JBfsM7Yj+4PXpW+XWV4BfOgw3HCb3kJZOZELZPYd5Pdl/g+qLdxVcQ0G5GXxy/aI+Wvg7hXgGcLEW92ndtQvvZAzCyNiUhNJaL37vx7LV67fP9eBr2by2nE+YZwK99vpad65ro03m+K9Vb1UVDV4uE4Giubz3Jo+M3ZTLNC7Whi6Vsmy1ea5vXFbTNN+XbdEovqrZvgKm9NWramqyzHiKnX6d/K7r+MF5h+b9/tgSz+tVoNL47OqYGxPtH4L5sH5EltAHLprVotWQwFWtYkhIrxWPrSR6/1gYqOdXEcXwPTB1s0DU34vysbTw7ck0uj2az+1OjhxN6r9qy5Ekwt74/QtRrbblcycl+N/n+RxDO9T0wd+5cvL29OXXq1DsrIzU1DdtqNvTq1oEFy9e9s3IK4zTxMxqP7caZ2b+QGBhF8xl9GLD/K3a0nUtWSrpCHYtGtvTcNIUbP/yB/9n71OjamF5bpnKg7zdEewWWKd+b64/itfei7Ly4Mp0nfEazsd05MWcb8YFRtJ7eh8H757O53Rwyi9GxbGRLv41TufrjH/icvUetrk3ov3kav/VbRuQrO+OfR3FmyS6kobGoaarTdEw3XHfPY1PbWaTEvZDl5eV2hUtr3GTn2emZCsus3rMpzkuHcH3hLqLu+VFnWEd67JnLofbzSI4sGlmuV9mE7rvn4HPInYvTt2DRxI6WK0aQFv+SoDP3AEiJSuD2d7+TFByDkpISNQe0osv2GfzRfTEJPvnrAXc3miyXr0m9qnTfNYfAk3cU2vkPLSd8hvOY7hybs42451G0ndaH4fvms6F98fVauZEtAzZO5fKPf+B99h72XZswcNM0dvRfRviregUIvPaYP2ZtkZ3nZMr/GPddNxEtAx0Ojv2BlPgX1O7ShL4/TiQpKgHpbV+avGpDZ2f/QsKrNtR//1fsfEPb/GzTFG6+1jZ7bpnKwdfaZmnyVVFXw//MPcJuPaPZVJci5fj+dZugq4+Agh/hlgu/wMKxBhWqmNB66RAuL9pF5D0/6g3tiMvuuezrMI+XCtpAhcomuOyew9ND7pybvoVKTexo921+Gwh41QbUdTSJ9w3n2R/X6PzjBIX3nvg8iiuLd5MUFouqpjoNR3fDZc+X7Gkzm9TX2nK58YkHNJVqnevEiRMxMDDAwMAAY2Nj6tevz6JFi0hJSXnX9v3nmThxIoMGDfrQZtDa2YkZE0bQuV0rlJTf3zKERqO7cmfzX/ifuUecXzhnZm5FXUeT2r2di9VxHN2V0Fve3Nl4goSASO5sPEHY7Wc4ju5a5nwzk9NJlSTJjqzUDIVlOo3uys0tf+Fz5h4Sv3COz8rPr65L8XY2HdWN4FveXN94nLiASK5vPE7w7Wc0HVVg5+NjNwi+8RRpmASJfwTnl+9HQ08LM3v53V6y0jJJkSTJjoyXaQrLrDe2G36Hr/Hs4BWkAZHcWLKH1Fgp9kM7KJS3H9Ke1BgpN5bsQRoQybODV/A7cp3647vLZILPPyDsyiNeBMeQFBTN3TWHyUpJx8yxhkwmTZIkd1Tt7Ig0MIqo2z7F1g9A81FdubblL7zP3iPWL5yjs7eioaNJvRLqtdmrenXfdJy4wEjcN+XXa7PX6hUgOzObZEmS7EhLkv+9qexYg7t7LxDuFUhimISb20/zIjIBq/rVgPw2dPdVG4r3C+dsKdtmWCna5pvyvfnDH3j8eobYp8EKy8nOyJJrt5kv06jWoSHev1+l0ZhuPDtyjacHr5AYEMnVr/PbgEMxbcBhSHtSYqRc/XoPiQGRPD14hWdHrtNo3Gtt4PJDbq5xI+D0PfJyFS+p8j12g7AbT3kRKiHBL4Jrr9qysX357lwkIy+3bMdHRqk3kWjbti2+vr54eXmxaNEiduzYweLFi9+lbf9psrOz38nX6z8m9K1N0DU1IMT9iSwtOyOL8Du+WL72w12YSo1s5XQAgq8+lumUJd8m47oz+eEWhp1ZQdMpvVBWUylSnkFlE/RMDQl0fyyXX+hdH6xKsNOqkS3Prz2WS3vu/ggrRzuF8spqKjRybUf6i1RivOU/X1WnZ3Nme25lwoXVdFzoirqOpkJ9E4eqhLnLlxnm/hjzxortNHOsUVT+6iNM6lVFWbVoXSgpK1G9VzPUtDWJ8fBTmKeqtgbVezXj2cHLCq//g+Greg24Jl+vIXd9qFxCvVZuaCunAxDg/gjrRvL1at3Eji/vb2bape/ptXIMOhUryF0Pve9L3R7N0DLQRUlJiVqdHNGuqEfgjaeyNhSsoA1VKsE2i0a2cjqQ3zYrFWqbZc33TdT4rCmq2ho8O3odU4eqhBR6piHuj7EoJn+LRjUUyD/CtJg2UBqU1VSo69qOjBepxHmX76fYZHyA7Q/fJ6V2rhoaGpiZmWFlZcWAAQMYMGAAp06d4tChQ7Rr1w4rKytsbW0ZPnw4kZGRMr2srCy+/PJLatWqhampKXXq1GHp0qWy6ydOnMDZ2Rlzc3NsbGzo3r07sbGxsutnzpyhTZs2mJmZUa9ePZYvX05mZsGQmoODA2vXrmXGjBlUrlwZe3t7NmzYIGd7QEAA3bt3x8zMjMaNG3P+/HksLS3Zv3+/TCYyMpJRo0ZRpUoVqlSpwsCBAwkMLBiiWrlyJc2bN2f//v00aNAAU1NThT33nJwcFi1aJMvnq6++Iifn0xz+0DExACAlLkkuPSUuCW0T/RL1StIpbb4PfjvPyambODToOzx3X8BxTDc6fjuySHm6psXnp/uqLEXomhiQIimkI0lCt9C91WjfkHneO1jgt4umo7uxf8hKuSHhJ8dvcmz6JvZ+voJrG45Rq1sT+m+dUaQ8TSM9lFVVSCtkZ5okCe1i7NQ20SetkI1pcUmoqKmiaaQnSzOqZcVon+2MDdxF6+9Gcm7sehJ8whXmWaO3Mypqqvgevqbw+j/oFvOckuOS0HtDvSYr0Hm9Xv2vPuTorK3sGryScyv2Y9WgGiMOLEBFvWAmy23yz+Tl5THfaxtL/HbRb/0kjkzbRLR3iKwNpRYqJzUuCZ03tE1FOoXbZlnzfRN1XdsRdNGLvNxclFVVSJUoyt9Aoa62iX5ReyRF20BpqNqhAROfbWeK/280HNOVY4NXvZshYfjke65vPeeqqalJVlYWmZmZzJ8/Hzs7O+Lj4/n6668ZPXo0Z86cAWDr1q2cOnWKHTt2YG1tTWRkJP7++RPkMTExjB49miVLltCrVy9SUlK4f78gcODixYuMGzeOlStX0qJFC8LCwpg1axYZGRl8++23MrnNmzczf/58pk2bxoULF5g3bx7NmjXDycmJ3NxchgwZgqmpKRcuXCA9PZ358+eTkVEwfJiamkrPnj1xcnLi1KlTqKur8/PPP+Pi4sLdu3fR1tYGICQkhCNHjrBr1y7U1dXR1Cza+9i4cSN79uzhp59+ok6dOvz6668cPnyYevXqvW1V/2eo3duZTitHyc6Pjvj+A1oDHtvPyP6O8wkjMzmNnpunEvYokE6LBsuuHRy59p3aEXzLm1+6LUDbSI+GX7Sj36Zp/NZ3KcmxUgA8X+sBxvqGkRgay+gTyzGva0POo3fUKyiENDCKw10Xoq6nRbXuTrT7cTwnBq4g0beog63t2o7g8w9IT3gpl17PxZme342Wne8f9e7q9clft2V/x/qGEfk4iFk3fsKuXQNZ4FOH2QPQNtRjl+t3WDaoTrsZ/fjil5lkp2dydNi7febliZGdJZUa23F8+Ie3OezmMw50XYiWkS51v2hH981TOdRnGamv2nK58hH2RsvCWzlXDw8Pjhw5Qps2bRg6dKgs3cbGhh9++AEnJyciIiKwtLQkLCyM6tWr4+zsjJKSEpUrV6Zp06YAREVFkZWVhYuLC9bW1gDY2xdEVX7//fdMnTqVIUPyI+2qVq3K0qVLGT9+PMuXL5dttNy+fXvGjRsHwPjx49m2bRtXr17FycmJy5cv4+/vz9GjR2Ufyf3uu+/o0qWLrJw//viDvLw8Nm/eLMtz/fr12Nracu7cOfr06QNAZmYm27ZtK/HTRFu2bGHatGkyndWrV3Pp0qVi5T8mAi48IMqzoDevopHffHSM9eUCLXSM9Yu8eb9OikSKjrH8W/7rOikS6VvlG+UZAEB8UBS/dFsgS1dVL7DzRaH8kl+VpYhkibRIb0THRJ/kQjZkpWWQGBJDYkgMEZ4BTLqyjoaft+Xahj8V5hv5KIjc7ByMbMyRvOZc0xNekpudg1ahutEy0Se1GDtTJUloFbJRy1ifnKxsOeeYm5XDi+AYAOIeB2Navxr1xnTl6tztcroV7a0xrV+Nu6vdKIzP3w/kAo5UXqvXpNfqVddYn5dvqFfdQveoa1y0Xl/nZayUF9EJVKxqDoChtSnNRnZhU7f5xDwLJfxhIE9P3aHPugm8jE4gLTH/3rULtSFtY/0ioxGvkyKRol3INm0FbbOs+ZZEXdf2vIyII/jKI5RVlcnNziky8pOfv1ShfqokqajNJkXbQGnITssgKSSGpJAYoj0DGX71e+p+3pa7xbTlf0Ne3qc5ovcPpR4W/vvvv7G0tMTMzIxOnTrh7OzMmjVr8PLy4osvvqBu3bpYWVnRrl07AMLD89+IXV1defz4MY6OjsyZM4dz586R++qNxcHBgbZt2+Ls7MzQoUPZsWMHcXFxsjIfPnzIunXrsLS0lB1jx44lJSWFmJgYmVydOnXkbDU3N5d9o8/Pzw8LCwu5r883atQIZeWCW3/48CEhISFYWVnJyrG2tkYqlcpt+lypUqUSHWtSUhLR0dE0adKkoIKVlXF0dCxtNf+nyUpJRxoSIzvi/SJIjpVSpVVdmYyKhhqWTjWJKCF8P/JBgJwOQJVWdWU6SaGSt8rX5FXgRWJIrMzZJYbEIPGP4GVsItUK5WfdpJbckpnChD8IoGpLB7m0qi0dCC9mrvIflJSVUFFXK/a6Wa3KKKuqyHq2/5CblYPkcRBWherGqlVdou8rtjPGw1+hvOSVAy+rjfaD2/MiJJbwa0+KXMtMSSchJEZ2/FOvti0Lyld9Va9hJdRrmGcA1QvVa/WWDoQ+KL5etQ110TMz4uWrOlPT0gAgLydXzras1HQyU9NLbJuRJdgWVUzbjCxF2ywp3+JQ0VCjdt8WPHVzh7w8crNyiH0chHUhG6xb1S12SUzUA3+F8rFvaAOlQllJbii+XBHDwvk4Ozvz008/oaqqioWFBWpqaqSkpNCvXz/atm3Ltm3bMDExIT4+nm7dusnmRRs0aMCjR4+4dOkSV69eZeLEidStW5c///wTFRUVjh07xr1797h06RJ79+5l2bJlnDp1CgcHB3Jzc5k3bx69e/cuYo+xsbHsbzU1+R8JJSWlMgUb5ebm4uDgwM6dO4tcMzQ0lP2to6NT6jzfN6mpaYSG58915+XmERUTi49fIPoV9LAwL9+PAL/Ogx1naTq5FwmBkSQ+j6bZNBeyUtN59mfBWsMBB+cT7RXItVe9oQc7z/H54UU4TepJwLn72HZtTOXmtTnYb3mp87VoZEulhraE3vIm82Ua5vWr0XbJYALOe8j1Tv/h7o6ztJjsQnxgJPHPo2k1tTeZqek8eW1N5JAD84n0es6lNYfydX47y3C3xThP7Inv+fvU6tIEm+a12dX/GwDUdbVwnvAZfn8/IDlWiraRHk2Gd6KCuRHeJ/OHNQ2tTanbuwUBl71ITXyJSQ1LOi0aTNSTIMLu+2JcyM5Hv56h/fqJxHo9J/q+H3WGdEDHzBDvffnLjdr9mL828vLMbQB477tE3RGdcP56CN77L2He2I6aA1rz95SCDdabfjWIkEtepETGo6aria2LM5Wa1+b0cPlhfVVNdWx7O/Nw68lSPn24tfMsrSe5IAmMJD4omjav6vX1taYj9s8n/OFz/n5Vr7d3nmWU22JaTezJs/P3qd2lCVWb12bHgFf1qq1Buxn98D57l5exUgysTOj05SBS4l/IhoTjXpX32fKRnPtuP6mJydTu3JhqLetycOwPQOnaZv9XbfP6a21zkIK2+XsZ2iaAXqWKaBrooP9qbbGJff7InDQ4Ri6i3a67E+p62ngfulqQ//YzdPlxIjFez4m874fDqzbw+FUb6PyqDZx/1QYe77tE/eGdaP31EB7vv0SlxnbY92/N2akFbUBNWwN9GzMg/8VKz7IixvbWZEhTeBkZj7quFo4TevD8b09SY6VoVdSj3rBO6Job4f+G5VhvjRgWzkdbW5tq1arJpfn7+xMfH8/ixYuxsbEB8gOUCqOnp4eLiwsuLi64urrSsWNHnj9/jq2tLUpKSjg5OeHk5CSbKz127BgODg7Ur18fPz+/IuWWBTs7O6KiooiKisLCwgLI/0xR7msPtn79+hw5cgQjIyMMDAzeuix9fX3Mzc25f/8+bdq0ASAvL48HDx5gZmb21vmWhic+/oyaOk92vmnHPjbt2IdLt46sWDT7nZV7d8tJVDXV6fDtCDQraBPlFciRwavl1hEaWJvKDaFFevhzcspGWswZQItZ/ZCGxHBy8kbZOsLS5JuTmU3Nns1oPqMPKhpqvAiP4/HBK9zdotgx3Nyan1/X5SPQqqBDhFcg+4eskluLaWhtxovIBNl5uIc/R6dupO3sAbSd1Z/E0BiOTvlZtsY1NzsHkxqWNBjYBi0DXdKkyUQ+fM7ugcuJfbV+NCcrm6ot6uA0qgvq2pq8iIrH/5IX7uuPvloSIb9sKvCvO2ga6uE4zQVtUwMSfMM5PXwtyRH59adnKe+OX4ZJOD38e5yXDKHO0A6kxCRy4+s9sjWuANqm+nT4aSLaJvpkvkwl/lkYp4atJfyqfIRpfhSxBj5u7sU87aJc33oSNU11Pls+In9zDq9A9gwtVK9VzEiKKqjXsAf+HJ66kQ5zBtBuZn69uk35WTbknJuTi1mtytTv2xLNCjokx0oJuu3NockbZPnmZuewd+QaOs37nMHb56Cuo0FCSAx/zv0F34ue6KPEvX/RNlvOGYBzMW2zNPk6z+5H3QEFm2AMO5v/CbRDA1cQfvuZLN3hi7aEXn0kZ4P/X3fQMtDDaWp+G4j3C+f48LW8/KcNVJJvAy/CJBwf/j2tlwzBYUh+G7i6dI9sjSuAab1q9HdbKDtvPrs/zWf3x/uwOxdm/5I/TWFnhf2gNmga6JIuTSbm4XOODPiWuFdtudz5CHujZaFUn5ybOHEiCQkJHDp0SC49Li6OOnXqMGbMGMaOHYuvry9ff/01Pj4+/PXXX7Rq1YqNGzdibm6Og4MDampqbNu2jYMHD+Lj48PTp0+5cuUKHTp0wMTEhEePHjF+/HjWrVvHoEGDuHjxIoMGDWLmzJn06dMHVVVVnj17hoeHB998k/+W6+DgwLhx45g6darMrh49emBvb8/atWvJzc2VRSMvX76c9PR0FixYgKenJxs2bMDV1ZXU1FRat26NqakpCxYswMrKioiICE6fPs2oUaOoXr06K1eu5MSJE9y6davEulm/fj0//PADP//8M/b29mzfvp0DBw5Qr149hZtIiE/OlT/ik3PvBvHJuXfDx7STT3l+ck7D93yZ5DNqdi63st8H/+pj6cbGxmzZsoVTp07RtGlTVq9ezYoVK+Rk9PT02LBhAx06dKBNmzY8fvyYw4cPo62tTYUKFbhz5w6DBg3C0dGRRYsWMXfuXNmmDB06dMDNzY3r16/ToUMHOnTowI8//oiVlVXpb1BZmX379pGRkUGHDh2YOHEis2fPRklJSRbtq62tzenTp7GxsWHEiBE4OTkxceJEpFJpmXuyU6ZMYfDgwUydOpUOHTqQm5vLgAEDypSHQCAQfPJ84utc/y8/lv748WNatWrFlStXaNCgwQe1RfRcyx/Rc303iJ7ru+H/tufqfbpM8hn23d8s9B/iY3qub81ff/2Fjo4O1apVIzQ0lIULF1K3bl3q16//oU0TCASC/08+wt5oWfi/cK7JycksXbqUiIgIDAwMaNmyJd99951sTatAIBAI3jOfuHP9V3OuHwtffPEFHh4eREdH4+Pjw/bt20tcryoQCASCd0teXk6ZjuLYvn079erVw8zMjDZt2nDz5s1iZQEOHz5My5YtsbCwwM7OjnHjxsntm1Be/F84V4FAIBD8xyiHgKajR4/y1VdfMXv2bNzd3XFycmLAgAGEhSlePnT79m3Gjx/PF198wa1bt9i/fz8+Pj6MHTu23G9POFeBQCAQvH/KYYemTZs24erqyvDhw6lZsyZr167FzMxM4YZAAPfu3aNSpUpMnjwZGxsbmjRpwrhx4/Dw8Cj32xPOVSAQCATvn3/Zc83MzMTLy4v27dvLpbdv3547dxTvKtW0aVNiYmI4c+YMeXl5xMfHc/ToUTp16lTutyecq0AgEAjeP/+y5xofH09OTg4mJiZy6SYmJnKfLX0dJycnduzYwbhx4zAxMaF69erk5eWxZcuWcr894VwFAoFA8P75AJtI+Pj4MG/ePObOncuVK1f4448/iImJYcaMGeWS/+v8XyzFEQgEAsF/jJzsf6VesWJFVFRUZF9A+weJRFLsapAffviBRo0aMW3aNADq1q2LtrY23bp1Y8mSJVhaWv4rm15HONcPzMey89H0B998aBNKTXOH4R/ahFLTSaPyhzah1GjnfTzrws3/3e/2e6Wextt9B/aj51/2RtXV1WnQoAGXL1+W+3La5cuX6dWrl0KdtLQ0VFRU5NL+Oc8tp97xPwjnKhAIBIL3Tzl8FWfy5MmMHz8eR0dHmjZtys6dO4mOjmbkyJEAjB+f/3m+bdvyP8/XtWtXpk+fzo4dO+jQoQPR0dHMnz+f+vXrU7ly+b7oCucqEAgEgvdPOfQU+/btS0JCAmvXriUmJobatWvj5uaGtXX+93PDw8Pl5AcPHkxycjK//vorixYtokKFCrRu3ZqlS5f+a1sKI5yrQCAQCN4/5fQ91zFjxjBmzBiF1xR95nP8+PGyHu27RDhXgUAgELx/PvG9hYVzFQgEAsH7p5x6rv9VhHMVCAQCwftH9FwFAoFAIChnhHMVCAQCgaCcycv70Ba8U4RzFQgEAsH7J/sj2unjLRDOVSAQCATvHxHQJBAIBAJBOSPmXD9devTogb29PWvXrn2n5VhaWrJmzRoGDx5cah3nmX2p59oODX0doj0D+XvxLuL9IkrUqdGtCS3n9Eff2pSk0FiurTlMwLn7Zcp37I0f0a8s/wmnO5v/KrXdpeG+12N2HfgDb98AYuPi+XbBLHr3KP/vKZaGcbNH0mdIL/T09Xjq6c3q+T/w3C+4WPkOn7Vl+JTBVLaxRFVNldDn4Rz4xY1Th88qlB8xdQhTFozHbecfrFm4vtR2dZjRD6cv2qOlr0OYVwDHF/9GrH/Jz79O1yZ0mj2AitZmxIfGcP57N7xfe/4rgw8o1Lu15zwnlux6o8zfi3crvNZ6Rl8aubZHU1+HCM8Azi7eheQNttbq1oS2swdgaG1KYmgsl9e64fuarW1n96d296ZUqGRETlYO0U+CuLLuCOEe/jKZob8vxKa5vVy+T0/c4ujUjQrLrDG8I/YTu6NlaoDULwKPJfuQ3PUt1kbTZrVotHQwBnaWpMZIebb5JP57L8muKykr4TC7H1X7OaNlakBarJTgozd5tO4oeTm5KKmqUH9efyq1q4+ejSlZL9OJuemN53eHSI2IL7F+CmM0pDsm4/qiampIhl8okct/JfWet0LZCl2aYzS4G1r21VDSUCMjIIzYTW68/PuunJyyrhZms4ei380ZFYMKZEVJiPl+L0mnrpfJtrdGzLm+W+Li4li5ciXnz58nJiYGfX19ateuzcyZM2nXrt07LXvfvn2oqn7wKiiC08TPaDy2G2dm/0JiYBTNZ/RhwP6v2NF2Llkp6Qp1LBrZ0nPTFG788Af+Z+9To2tjem2ZyoG+3xDtFVimfG+uP4rX3ouy86yUdBoNrFNu95eamoZtNRt6devAguXryi3fsjJ8siuDJ3zOshnfERIQyphZI9h06Ef6tXQlNSVNoU5S4gt2rN9DcEAI2VnZtOrkzOIf5iGNl3Lj0m052bqN7OkzpCd+TwPKZFfrCT1pNaY7h+dsJe55FO2n9WX0vgWsaz+bzGKev3WjGnyxcRp//3iEp2fvUadrE1w3TWdb/6WEvXr+K5pMlNOxcqjG8J1zeXyqwO7SyLyO84TPaDa2OyfmbCM+MIrW0/sweP98NrebU6ytlo1s6bdxKld//AOfs/eo1bUJ/TdP47d+y4h8ZWv88yjOLNmFNDQWNU11mo7phuvueWxqO4uUuBeyvLzcrnBpjZvsPDs9U2GZVXo1pfE3Q7g7fxeSu37YjehIu/1zOdl2nkJHp1PZhHb75hD4uzs3p2zBxMkOp5UjSI9/SdjpewDYT+6J3YiO3JqxDemzMAzsrWm+fjw5mdk8Wf8nqlrqGDnY8HTDcRKehqKup0WjrwfTfv+XnOown7yc0vXc9Hu0pNKSsUQs2ULqPW+MhnbH5rel+HeeTFakpIi8TtO6pNx8RMy6veRIkzFwaUOVrQt4/sWCAoesqkLVvcvJkSYTOmUNWVFxqFkYk5eZVSqbyoVPvOf6wb/nOnToUDw8PNi4cSP379/n0KFDdOrUiYSEhLfOMzNT8T9YYQwNDdHT03vrct4VjUZ35c7mv/A/c484v3DOzNyKuo4mtXs7F6vjOLorobe8ubPxBAkBkdzZeIKw289wHN21zPlmJqeTKkmSHVmpGeV6f62dnZgxYQSd27VCSfnDfWnli7ED2b1xH5dOXSXQN4il01egratN177F96Lv33jA1bPXCAkIJSIkkt+3HyHg2XMaNKsvJ6ejp8O3m5bwzcxVvEx6WSa7WozqypUtJ3h69h4xfuEcnr0FDR1NGrgU//xbjOrK81veXNl0HElgJFc2HSfo9jNajOomk0mWJMkdtTs5IgmMJOiOT5lkXsdpdFdubvkLnzP3kPiFc3xWfpuqW4KtTUd1I/iWN9c3HicuIJLrG48TfPsZTUcVtNXHx24QfOMp0jAJEv8Izi/fj4aeFmb2VeTyykrLJEWSJDsyXip+Kao1rhvP3a4ReOAKLwIiub9oD2kxUuyGdVAoX2NYe1KjpdxftIcXAZEEHrjC88PXqT2hu0zGpHENIi54EnHBk5TwOCLOPyDi/AOMG1bPt+1lGpc+X03IiTu8DIwi3us5d77cgb6dJfo1KhVbP4UxHtObxD8ukvj7eTICw4la+gvZsYkYDe6mUD7qm1+RbD1C2kN/MkOiiN3wO2lPAqnQuZlMxnBAR1SN9AkZ9y2p973Jiogl9b43aY/8Feb5TvgA33N9n3xQ5yqVSrl16xZLly6lTZs2WFtb06hRI6ZOnUq/fv0AcHBw4Oeff5bT69GjB3PnzpWdOzg4sHLlSiZPnoy1tTVjx46lc+fOLFy4UE7vxYsXmJubc+LEiSL5fPPNN7Rp06aIjZ07d+bLL7+Une/bt4+mTZtiZmaGo6MjmzZtkvtU0fPnz+nRowdmZmY0btyYs2cVDxcWh761CbqmBoS4P5GlZWdkEX7HF0vHGsXqVWpkK6cDEHz1sUynLPk2GdedyQ+3MOzMCppO6YWymvwnmj4FLK0tMDaryO0r92RpGemZeN5+SL3GdUudT5OWjlSpXhnP215y6QvXzuXiySt43PQsk12GlU2pYGpIwLXHsrTsjCyC7vpQxdGuWD3rhjXwf00HwM/9EdaNFLcZdW0N6vdszr3fLxeb55tkDCqboGdqSKC7vK2hd32wKqGtWjWy5XkhW5+7P8KqmPtTVlOhkWs70l+kEuMdInetTs/mzPbcyoQLq+m40BV1HU2F+kb1qhJ1Vb7MaPfHGDdWbKeJYw2i3eXlo648omL9qiip5v8/xN7zw6xFbSrYWgBQoUYlzFraE3HpYbH3rqanBUBGUmqxMq+jpKaKVl1bXl6Tb0fJ1z3RdqxdqjwAlHW0yElKlp3rd2pGisczLJaOp9bdPdQ4vwnT6V+A6nv8X8/LLdvxkfFBx0R1dXXR1dXl9OnTNGvWDE3Nov8YpWXz5s3MmTOHK1eukJeXx+XLl1m3bh3Lly9HWTn/HeLEiRNoaGjQpUuXIvoDBw7khx9+wM/PDzu7/H/y4OBg7t69y8qVKwHYvXs33333HWvWrKF+/fo8e/aM6dOno6amxrhx48jNzWXIkCHo6+tz/vx50tLS+Oqrr8jIKH3PT8fEAICUOPlvPKbEJaFrbliiniIdbRP9MuX74LfzxD4NJi0xGYsG1Wn11SD0Kyv+8PDHTEXTigDEx8mPkCRIEjCxMFGkIkNHT4cznkdRV1cnJyeHNQt+5OalO7LrvQf3pHJVKxZPWV5mu/RePa+XhZ5TclwSFcyNitXTNTEgWYGO3qvnXpj6Li1QUVPlwR/uxeb5Jhld0/y8FbUpPbOSbU2RFNKRJKH76t7/oUb7hvTdOAU1LXVexkrZP2Sl3JDwk+M3SYqIIzlGiomdJe3mDcK0ljUHhq6Sy0fDSA9lVRXSC5WZJknCvJXiFylNE33Srsm/rKZLklBWU0XDSI/0WCneG/9CTUeTz66sJi8nF2U1VZ6s/xP/3X8rzFNZTQXHrwcTfv4BaVGlG5lTMayAkqoK2XFSufRsiRTdFvUVKxXCaGh31MwrIj1W8JKkZm2OjnM9pMevEjxqGepWZlT6ZgLKOlpEf7ezVPn+W/JyxZzruytcVZVNmzYxffp0du/eTb169WjatCm9e/emcePGZcrL2dmZ6dOny84NDQ2ZP38+165dk/VIDx8+TO/evdHQ0CiiX6tWLerVq4ebmxuLFi2Sydva2uLo6AjA2rVrWbZsGS4uLgDY2NgQFBTEjh07GDduHFeuXMHHx4eHDx/Kvg24cuVKunVTPHwDULu3M51WjpKdHx3xfZnuu7zx2H5G9necTxiZyWn03DyVrPjgj/Lt8R+69u3EgjVzZOczhs5767xSk1Nx7TgKbR0tmrR0ZObSKUSGRXPvugdVqldm8vxxjHGZRE52zhvzauDSgt7fjZad7x615q3tKgtOn7fD+4IHKQnFD1kXlqnb25ker9l6cOS7DQQMvuXNL90WoG2kR8Mv2tFv0zR+67uU5FgpAJ4HC5xFrG8YiaGxjD6xHPO6NuAZojDP8qSKSzOqDmjJjcmbSfINx7BOFRy/GUpymITAg1flZJVUlHH+eRJqFbS5MuKHd27bP1To6ozF/FGETl1NVkTB/KySshLZcUlEzN8IubmkPwlExVCPSovGvDfn+jEO9ZaFDx7N4+LiQpcuXbh16xZ3797l4sWLbNy4kcWLFzN79uxS59OwYUO5cyMjIzp06ICbmxtt2rQhKiqKa9euyQ3xFmbgwIFs375dzrkOGDAAyA+8Cg8PZ+bMmXJ2ZWdnk/cq6s3X15dKlSrJfXS3cePGsp6zIgIuPCDKM1B2rqKR/0h0jPV5GVkQaKFjrE9qoTfv10mRSNExln/zf10nRSJ9q3yjPPODcZRU1MjLLt+51/eJ+7nrPHlQEF2prq4GQEVjI2IiYmXpRiZGxMeWHMmZl5dHeHB+NKzf0wCq1rBh5LSh3LvugYNjXQwrGnDoyh6ZvKqqKg2b1afvMBdaVe9M1mtBI95/exDmVRDwpKKe//z1jPVJeu056Rrrk/zqGSoiWSJFt9Dz1zXW56UCHQv7KljVr865tYeKzU+RjN+FB0S81lZV1Qva6otCbepNtuoU6qXqmOiTXKgdZqVlkBgSQ2JIDBGeAUy6so6Gn7fl2oY/FeYb+SiI3OwcjGzMSX/NuWYkvCQ3OwfNQmVqmeiTFqvYznRJElqF5DVN9MnNyibj1ctGw8Vf8GzLaUKO5wd7SX3C0bEyps6UXnLOVUlFmRabJ2NQuzJ/91tBZmIypSUn8QV52TmoGhvIpauaGJBVQh0DVOjmTOV1swib/QMvL96Tu5YVmwhZ2XIOLiMgDGVtTVSMKpCT8KJwduXPR/yyXho+eEATgKamJu3atWPevHmcP3+eoUOHsmrVKjIzM1FWVpY5r3/IVrCzh46OTpG0QYMG8ddff5Gens4ff/yBpaUlzs7FB1r079+fsLAw7t69i5eXF35+fgwaNAhANq/6ww8/cO3aNdlx69Ytbt9WHElZGrJS0pGGxMiOeL8IkmOlVHltuEpFQw1Lp5pEeBQfbBD5IEBOB6BKq7oynaRQyVvla/IqgCQv9+PeTSU1JY3w4AjZ8dwvmLiYeJq2aSKTUddQp0HTejy6/6SEnIqirKyEuka+s75y9hqD2g5jcMdRsuOp1zPO/3mRwR1HyTlWgMyUdOJDYmRHrH8EL2ITsW3pIJNR1VDDpklNQjz8irUh1NOfGi3ln3+NlnUJfVD02Tp90Z6E0FgCrhd/n4pkMlPSZc4uMSQGiX8EL2MTqVaoTVk3qSW3ZKYw4Q8CqPra/QFUbelAeAn3B/m9LZVXL0WKMKtVGWVVFVnP9h9ys3JIeBSEeWv5+jFvVZe4+4rtlHj4FxkyNm9dl/iHQeS9GpFQ1VQnr1DvKy8nF14L0lNSVaHl1ikY2lvzd//vigxNv4m8rGzSngSg17KBXLpuywakejwrVk+/R0sq/zCL8LnreXHmZpHrqfe9UbexAKUCWzWqWpKbmv5+HCtAdk7Zjo+M/4RzLUzNmjXJzs4mPT0dY2NjoqOjZdfS09Px8yv5n/Af/hmOPXfunKwXqqRUfHSqubk5rVu35vDhwxw+fBgnJydsbGwAMDU1xcLCgqCgIKpVq1bk+MfuyMhIwsPDZXl6eHjIBTyVhgc7zuI08TNqdG2MsZ0V3daNIys1nWd/FvyTDDg4n1bzBhbo7DyHtbM9TpN6YlTdAqfJPancvDYeO86WOl+LRrY4ju6Kib01+pVNqPlZUzquGEHAeQ/ILb/GnZqaho9fID5+geTl5hEVE4uPXyBR0bFvVi5HDv7qxvDJrrTr3prqNauydP0C0lLSOHv0gkxms9t6Ji8o+LDyqOlDcWrliKW1BTY1qjB4/CC69+/CmT/OA5D8IplA3yC5Iz01nRfSFwT6BpXKrhs7z9JmQk/qdGmCmZ0V/b+fQGZqBl7HC57/6P0L6PLlIDmdas51aDOxJybVK9FmUi+qNbfnxs4zcnmraarTwKUF9w4VH8hUGpl/uLvjLM4TelKra2NM7Kxw+X48manpPHnN1iEH5tP+NVvv/naWqs72OE/sScXqFrSY1Aub5rW5szO/rarratF2zgAqNahOhUoVMa9rQ8+1Y6lgboT3yfwXWUNrU1pN64OFQ1X0rYyxbVefvhunEPUkiLD7Rdeu+vxyhmoDW1PdtS0VbCvh+M1QtMwN8d+Tv+Ss+U/jaf5TwXP233MJbQtDHJcNoYJtJaq7tqXawNY823paJhN+wZM6k3tSqUMDdKyMseramFrjuxF+Jn+9rpKKMq1+mYpxI1uuT9oEeXlomuijaaKPimbxLwmFidv+Jwb9OmA4qDMa1a2wWDIWVVMjEg7kP1urdTOxWjdTJq//WSsq/zib6NW7SbnzBFVjA1SNDVDR15XJJOw/g4q+HhZfj0W9miW6rRtiNsOV+H2ni5T/zvjEo4U/6LBwQkICw4cPZ8iQIdSpUwddXV28vLzYsGEDbdq0oUKFCrRu3Zp9+/bRrVs3jI2NWbduHTk5pfuh19TUpGfPnqxdu5YnT56wbdu2N+oMHDiQRYsWoa6uXmRYev78+Xz55Zfo6+vTuXNnsrKyePjwIVFRUcyaNYu2bdtiZ2fHhAkT+O6770hPT2fBggVlXkt7d8tJVDXV6fDtCDQraBPlFciRwavl1qIaWJvKDe9GevhzcspGWswZQItZ/ZCGxHBy8kbZGtfS5JuTmU3Nns1oPqMPKhpqvAiP4/HBK9zdcpLJNxeV6R5K4omPP6OmFsx5btqxj0079uHSrSMrFpV+KuDfsnvTATQ0NZj33Sz09HV54vmMKZ/PklvjamVTiZjIAqevpaPNV6tmY2phSkZ6BsEBIXw97VvO/XlRURFvhfvWv1DTVKfX8hGvNpEIZOfQlXLrRitWMSMpquD5hz7w5/epP9NpzkA6zhxAQmgMB6f8LFvj+g/1ejZHTVsDj8Pyc4JllfmHm1vz21TX5SPQqqBDhFcg+4eskrPV0NqMF5EFATzhHv4cnbqRtrMH0HZWfxJDYzg65WfZGtfc7BxMaljSYGAbtAx0SZMmE/nwObsHLifWJwyAnKxsqraog9OoLqhra/IiKh7/S164rz/6KlBG/iU65MQd1A31qDvdJX8TCd9wrgxZS8qrNa46lsZy8ilhEi4P+R7HZUOoMawDaTGJeCzeI1vjCnB/0R7qf9kfp5Uj0KhYgbRYKQH7r/D4x2MAaFsYUblrfuxI93PfyuV/a8Y2nrtde2P9AiSduo6KYQVMpwxE1cSIDL8Qgkctk82hqlWSD8AzGtwNJTVVKn09jkpfj5OlJ99+TNAXCwDIioojaNgSLBaNpsapn8iWSEk4/DeSjcVPFZQ7n/gmEkpSqfSD3WFGRgarV6/m8uXLPH/+nMzMTCwsLOjatStz587F0NCQFy9eMHPmTC5cuICOjg6zZ8/m2LFjcjsrOTg4MG7cOKZOnVqkjKtXr+Li4kK9evVwd5ePelS0Q1NycjJ2dnZkZWXh6+uLkZF81OORI0fYsGEDvr6+aGpqUrt2bcaOHStbOhQQEMC0adO4f/8+VlZWfPvtt4wdO7bYHZp+dZj8r+vxfTD9wTcf2oRS09xh+Ic2odR00qj8ZqH/CNp5H25NclmplvXx2FpPo2xDxR8Sa6995ZaX2o45bxZ6jazRHzbYs6x8UOcqEM71XSCc67tBONd3w/+tc/21bKNUWWMV7+a2fft2NmzYQExMDLVq1WLlypUlxtZkZmaydu1aDh06RHR0NKampkyZMoUJEyaUyZ438cGjhQUCgUDwf0g5RAsfPXqUr776inXr1tGsWTO2b9/OgAEDuH37ttyqjdcZNWoUkZGR/PTTT1SrVg2JREJamuKdvf4NwrkKBAKB4P1TDptIbNq0CVdXV4YPzx+tWrt2LRcvXmTnzp18/fXXReQvXbqEu7s7np6eVKyYv5FMlSpVisiVB//JaGGBQCAQfNrk5eaW6ShMZmYmXl5etG/fXi69ffv23Llzp4g8wKlTp2jYsCGbNm3C3t6eRo0a8eWXX5KcXPq1x6VF9FwFAoFA8P75lz3X+Ph4cnJyMDGRj5Y2MTEhNlbxsr7g4GBu376NhoYGe/bsISkpiS+//JLo6Gj27NmjUOdtEc5VIBAIBO+fD7BDU25uLkpKSvz666/o6+fvwLV27Vr69u1LbGwspqblt4+6cK4CgUAgeP/8y12XKlasiIqKChKJ/DdtJRJJsU7SzMwMCwsLmWMFZB9qCQ8PL1fnKuZcBQKBQPD+yc0r21EIdXV1GjRowOXL8juJXb58maZNmyosslmzZkRHR8vNsQYG5m9eUlx08dsinKtAIBAI3j/l8D3XyZMnc+DAAfbs2YOvry/z5s0jOjqakSNHAjB+/HjGjy/Y1rJ///4YGRkxefJknj17xu3bt/nqq69wcXEpMnf7bxHDwgKBQCB4/5TDUpy+ffuSkJDA2rVriYmJoXbt2ri5uWFtbQ0gt8875H9D/M8//+TLL7+kffv2GBgY0KNHD4XLdv4tYoemD8yGepM+tAml4nhm6Ic2odTcerz7Q5tQahrWcf3QJpSa+Sq2H9qEUpOg8qEtKD0zY978gYT/CvES7zcLlRKVVaPeLPQaOV+9p+/MlhOi5yoQCASC90859Fz/ywjnKhAIBIL3j3CuAoFAIBCUMx9gnev7RDhXgUAgELx/RM9VIBAIBILyJU84V4FAIBAIyhnhXAUCgUAgKGf+5faH/3WEcxUIBALB+0f0XAUCgUAgKF/y8oRzFQgEAoGgfBE9V4FAIBAIyhnhXAXvm9Yz+tLItT2a+jpEeAZwdvEuJP4RJerU6taEtrMHYGhtSmJoLJfXuuF77r7setvZ/andvSkVKhmRk5VD9JMgrqw7QriHv0xm6O8LsWluL5fv0xO3ODp1Y5nsHzd7JH2G9EJPX4+nnt6snv8Dz/2Ci5Xv8Flbhk8ZTGUbS1TVVAl9Hs6BX9w4dfisQvkRU4cwZcF43Hb+wZqF68tkW1m57/WYXQf+wNs3gNi4eL5dMIvePTq90zKLY9KcMfQf6kIFfT0eP/Dm2/lrCfQNKla+c8/2jJ4ylMpVrV7Vaxh7tv3OCbfTMplz945haW1RRNf9wg0mDZn9RptqDO+I/cTuaJkaIPWLwGPJPiR3fYuVN21Wi0ZLB2NgZ0lqjJRnm0/iv/eS7LqSshIOs/tRtZ8zWqYGpMVKCT56k0frjpKXk7/pQL25/bHu6YROJSNyMnNIfBzMw7VHiLvvX1yxADgM60jD8d3RMTUgwS+Ca8v2EVmCrZWa1aLV4sEY2VmSEiPlwdaTPNlXYGulpjVpOL4Hpg426JobcWHWNnwOX5PLQ01bg+ZfDaJ618ZoGuryMiKeJ/su4rVdcdt+E0sWz2LM6MEYGupz964nU6cvxNvbr1j5YUMHsnPHj0XSdfSqkZGRIctzyWL5Zx0dHYuVdcO3srG0iKU4/wesXLmSEydOcOvWrQ9tCs4TPqPZ2O6cmLON+MAoWk/vw+D989ncbg6ZKekKdSwb2dJv41Su/vgHPmfvUatrE/pvnsZv/ZYR6ZX/rcL451GcWbILaWgsaprqNB3TDdfd89jUdhYpcS9keXm5XeHSGjfZeXZ6ZpnsHz7ZlcETPmfZjO8ICQhlzKwRbDr0I/1aupKakqZQJynxBTvW7yE4IITsrGxadXJm8Q/zkMZLuXHptpxs3Ub29BnSE7+nAWWy621JTU3DtpoNvbp1YMHyde+lTEWMmjKU4RO/YOG0bwkODGHCrFH86raBz5wHkZqSqlBHmpjEtvW/EeSfX69tOrfgmx8XkBifyLWL+W39864jUVYu+PKkiZkxbhd2cfbExTfaVKVXUxp/M4S783chueuH3YiOtNs/l5Nt55EaEV9EXqeyCe32zSHwd3duTtmCiZMdTitHkB7/krDT9wCwn9wTuxEduTVjG9JnYRjYW9N8/XhyMrN5sv5PAF4ERnFvwW5SQmNR0VSn1rhutN//JSdazCb9tbb8OjV6NqXV0iFcXbiLyHt+OAzrSM89c9nffh7JkUVtrVDZhF675+B9yJ3z07dQqYkdbVaMIC3+JYFn8m1V09YkwTccnyPX6LR+gsJyWy4ZTOWWdTk/fQsvwiRYNq1F+9WjSUt4ie/RG2+s49eZO2cSM2eMZ9SYmfj5BbJo4UzOnj6Ifd3WJCenFKuXkpKKXS1nubR/HOs/+PgG0KFjf9l5Ts57iOT9xJ3rJ/M914kTJ2JgYICBgQHGxsbUr1+fRYsWkZJSfKP7L+I0uis3t/yFz5l7SPzCOT5rK+o6mtR1cS5Wp+mobgTf8ub6xuPEBURyfeNxgm8/o+morjKZx8duEHzjKdIwCRL/CM4v34+GnhZm9lXk8spKyyRFkiQ7Ml4qdojF8cXYgezeuI9Lp64S6BvE0ukr0NbVpmvf4nt792884OrZa4QEhBIREsnv248Q8Ow5DZrVl5PT0dPh201L+GbmKl4mvSyTXW9La2cnZkwYQed2rVBSVnovZSpi6LhB7Ph5L3+fukyAz3MWTluOjq42Pfp2Llbn7nUPLp1xJygghLCQCPb96oafdyCOzRrIZBLjpcRLEmRH647OJL9M4VwpnGutcd147naNwANXeBEQyf1Fe0iLkWI3rINC+RrD2pMaLeX+oj28CIgk8MAVnh++Tu0J3WUyJo1rEHHBk4gLnqSExxFx/gER5x9g3LC6TCb46A1irj8lOVRCkl8EHkv3o6anhWGdKoqKBaDB2G74HL7G04NXSAyIxH3JHlJjpTgMVWxr3SHtSYmR4r5kD4kBkTw9eAWfI9dpOL7A1pDLD7m12o3A0/eK7YVZNK6B79HrRNx6xsvwOHz+uE60ZwDmr91PaZk2dQxr1m7i2LHTPH3qy8hRM9DT0+WLz/uUqJeXl0dMjETuKEx2drbc9bi4hDLbV2Zyy3h8ZHwyzhWgbdu2+Pr64uXlxaJFi9ixYweLFy/+0GaVGoPKJuiZGhLo/liWlp2RRehdH6wcaxSrZ9XIlufXHsulPXd/hJWjnUJ5ZTUVGrm2I/1FKjHeIXLX6vRszmzPrUy4sJqOC11R19Estf2W1hYYm1Xk9pV7srSM9Ew8bz+kXuO6pc6nSUtHqlSvjOdtL7n0hWvncvHkFTxuepY6r08BqyqVMDEz5uaVO7K0jPQMPG550aCJQ6nzadqqMTa21ty/5VWsTB/Xnpw8cpaM9IxiZSC/DRnVq0rUVfl2F+3+GOPGituqiWMNot3l5aOuPKJi/aooqeZ/Iy72nh9mLWpTwTZ/qLpCjUqYtbQn4tLDYu2oMaQdmS9SSXwaUqyMqUNVQguVHer+GItibDV3rFFU/uojTOtVRVm19N+zi7zrh03HRuhaGMnyNbavQsiVR6XOA6BqVWssLMy4cOGqLC09PZ1r1+7QvHnjEnW1tDQJ9L9D8PP7HD+2mwYN6hSRqVa1CqHBHvj73mL/vs1UrWpdJvvehrzcvDIdHxuf1LCwhoYGZmZmAAwYMIBr165x6tQpfvjhB/z8/FiyZAk3b94kJycHe3t71q9fT506RRvagwcPWL58OQ8fPiQrK4s6derwzTff4OTkJJP57bff2LhxI+Hh4ejo6NCgQQPc3NxQVVXl6dOnzJ8/H09PT3Jzc7GxsWHlypW0bt26RPt1TQ0ASIlLkktPiUtCz8yoeD0TA1IkhXQkSeia6Mul1WjfkL4bp6Cmpc7LWCn7h6yUGxJ+cvwmSRFxJMdIMbGzpN28QZjWsubA0FUl2v0PFU0rAhBf6K03QZKAiYVJibo6ejqc8TyKuro6OTk5rFnwIzcvFTiT3oN7UrmqFYunLC+VLZ8Sxib59Ronka/X+LgETM1LrlddPR0uPfwLNXV1cnNyWDH/e65fUjz94dzGicpVLPlj3/E32qRhpIeyqgrphdpdmiQJ81aKX6Q0TfRJu/ZELi1dkoSymioaRnqkx0rx3vgXajqafHZlNXk5uSirqfJk/Z/47/5bTs+yYwNabJmCqpY6aTFSLn2+qtghYa1XtqYW+r9KlSRRuaViW7VN9AkrZGtqXBIqaqpoGumRGitVqFcY96/30G7VaEbe3UBOVnZ+2pI9BF/0KpX+P5ibmQIQEyvf64yJlWBZybxYPT+/QMaMm82jR97o6eowdeoY3K8cp1HjTgQE5M/X373ryagxM/H1DcDUxJgF86dx7epx6jVoT0JCYpnsLBMfocMsC5+Ucy2MpqYmWVlZREVF0bVrV5o2bcqxY8fQ19fHw8Oj2HmFly9fMmjQIFatWoWSkhK//vorAwYMwNPTEyMjIzw9PZkzZw5btmyhWbNmJCUl4e7uLtMfO3YsdevW5eLFizJnq6lZtAeopqbGPO8dsvODI9eWfyW8RvAtb37ptgBtIz0aftGOfpum8VvfpSS/+qHwPFjw0eZY3zASQ2MZfWI55nVt4EHRj6V37duJBWvmyM5nDJ331ralJqfi2nEU2jpaNGnpyMylU4gMi+bedQ+qVK/M5PnjGOMyiZxPfFcXgB79uvD12oK6nDT4zYFFxZGSnEq/9sPQ1tGiWasmzF02nYiwKO5cu19Ett8QFx57PsXX+/3MZyuiikszqg5oyY3Jm0nyDcewThUcvxlKcpiEwIMFvbboG8843WkhGka62A5uR8ttUznXcxnppXR674v6Iztj4ViDv0au42V4HJZNa9FikSsvwuMILaH3+sUXfdiyabXsvJfLsLcq//YdD27f8ZCd37x1H4/755k8aSQzZy0B4Oy5y0V0/H1vMWzoANb/9MtblVsa8rLL5lw/3KTM2/HJOlcPDw+OHDlCmzZt2L59O9ra2uzevRt1dXUAbG1ti9Vt06aN3PmaNWs4ceIEFy5cYNCgQYSFhaGjo0O3bt3Q09MDwMGhYHguLCyMKVOmYGeXPyxbrVo1heVkZWWxs+cy2bmqev7j0DHW58VrQRY6xvokS6TF2psskaJTqJeqY6JPcqFeRVZaBokhMSSGxBDhGcCkK+to+Hlbrm34U2G+kY+CyM3OwcjGHB4Uve5+7jpPHnjLztXV1QCoaGxETESsLN3IxIj42KJBI6+Tl5dHeHB+RLTf0wCq1rBh5LSh3LvugYNjXQwrGnDoyh6ZvKqqKg2b1afvMBdaVe9MVmZWifl/TFw+e41HHk9l5+oa+fVqbGJEdESMLL2isRFxpajXsOBwAHyf+lPNzoax04cXca5Gxoa079qab+d/XyobMxJekpudg2ahdqdlok9aMQ4uXZKEViF5TRN9crOyyUjIn0NvuPgLnm05Tcjx/EA2qU84OlbG1JnSS8655qRlkBwcQ3JwDPEPAul5/XtsXdvKgp5eJ+2VrdrG8mVrm+iTWsz/VaokCe1Ctmob65OTlU16Qunm+1U01Wg+bxBnJm4g+O/8qYx4nzCM61Sh0bjuJTrXv/46z927BdMfGhr5v1tmpiaEhUXK0s1MTYhWMIdaHLm5uXh4PKKGbdViZVJSUvH29sO2BJly4SOcRy0Ln9Sc699//42lpSVmZmZ06tQJZ2dn1qxZw6NHj2jevLnMsb4JiUTCjBkzcHR0xNraGisrKyQSCeHh+T9S7dq1w8rKivr16zN27FgOHDjAy5cF/3CTJk1i2rRp9OzZk++//x4/v+JD5f9xdokhMUj8I3gZm0i114bVVDTUsG5SS27JTGHCHwRQtaX83FvVlg6EexRfLuQve1B55RAVYVarMsqqKrKebWFSU9IID46QHc/9gomLiadpmyYyGXUNdRo0rcej+08U5lEcyspKMqdy5ew1BrUdxuCOo2THU69nnP/zIoM7jvqkHCtAakoqYcHhsiPQNwhJTBzN2xRMS6hrqNOoWQO87j0uIaeiKCsrKfw/cBnUg8zMTE4fPV+qfHKzckh4FIR5a/lhVfNWdYtdEiPx8C8yZGzeui7xD4PIezUioaqpTl6u/K9uXk4uvCGYLL8tK+4r5GblEPs4iMqFyq7cqi5Rxdga7eGvUD721QtnaVBWVUVFXVW2hOgfSnM/yckpBAYGyw5vbz+iomLo2LFgaklDQ4OWLZ24davoKERJODjUJio6ttjrGhoa1KxZnejomGJlygMx5/oR4ezszE8//YSqqioWFhaoqRXvOEpi4sSJxMbG8t1332FtbY2Ghga9evUiMzN/WYqenh7u7u7cuHGDK1eu8OOPP7J8+XIuXbqEhYUF8+fPZ+DAgVy4cIFLly6xevVqfvjhB4YOHfrGsu/uOEuLyS7EB0YS/zyaVlN7k5mazpPjN2UyQw7MJ9LrOZfWHMrX+e0sw90W4zyxJ77n71OrSxNsmtdmV/9vAFDX1cJ5wmf4/f2A5Fgp2kZ6NBneiQrmRnifzO8hGFqbUrd3CwIue5Ga+BKTGpZ0WjSYqCdBhN0vfi1gYQ7+6sbIaUMJDgghNDCM0TOGk5aSxtmjF2Qym93W89TrGZu+2wbAqOlDefLAm4iQSNQ01GnRvhnd+3dh7aL1ACS/SCb5RbJcOemp6byQvihxnWd5kJqaRmh4fk8hLzePqJhYfPwC0a+gh4W56Tst+3X2/nKIsdOHE+QfQvDzUMbPHElqSiqnXnOG24/8zBNPb9av2ALAuBkjePTgKeEhEairq9OqgzOf9e/GygVFlxT1G9yLM3/+TVpq6aPDfX45Q/MNE4n3eo7krh81hnVAy9wQ/z35kcbNfxoPwK3p+c/Zf88lao7shOOyIfjvvYSJkx3VBrbmxqRNsjzDL3hSZ3LP/Ehg33AM69pQa3w3gg5fB0BVV4s6k3oQfsGTtFgpmkZ62I3shLaFESF/3aE4vH49Q6f1E4nxek7UfT/qDumAjpkhT/bl29rpx3xbL8zMt/XJvkvUG9GJVl8P4cn+S1g0tqP2gNacm1Jgq5q2Bvo2+TEeSspK6FWqiLG9NenSFJIj48lKTiP81jOc5w8iKyWDlxFxVGpWi1r9W3JjxcFS1/M/bPh5O1/Nm4qPbwD+/s9ZMH86yckpHPz9mEzm/NlD3LvvycJF+XESixfN5M6dB/gHBFGhgh5TJo+inkNtpkyZL9NZs2oxJ09dIDQsAlMTYxYumIGOjjZ79h4us41l4hPvuX5SzlVbW1vhEGy9evU4dOgQmZmZpeq93r59m1WrVtGlSxcAYmNjiYmRf4tTVVWlTZs2tGnThvnz52Nra8u5c+cYMWIEANWrV6d69epMmDCBWbNmsXfv3lI515tbT6KqqU7X5SPQqqBDhFcg+4esklvjamhtxovIguCWcA9/jk7dSNvZA2g7qz+JoTEcnfKzbI1rbnYOJjUsaTCwDVoGuqRJk4l8+JzdA5cT6xMGQE5WNlVb1MFpVBfUtTV5ERWP/yUv3NcfLdNb4+5NB9DQ1GDed7PQ09flieczpnw+S26Nq5VNJWIiC96ctXS0+WrVbEwtTMlIzyA4IISvp33LuT/fvBzkXfPEx59RUwvmPzft2MemHftw6daRFYvefi60rOzcuBdNTQ0WrppDBX09Hj14yrhB0+XWuFauYkX0a8Px2jpaLF79JWYWJmSkZxAUEMKCqcs4c+yCXN5NWjTCpro1X01eWiabQk7cQd1Qj7rTXfI3kfAN58qQtaS8WuOqY2ksJ58SJuHykO9xXDaEGsM6kBaTiMfiPbI1rgD3F+2h/pf9cVo5Ao2KFUiLlRKw/wqPf8x3IHk5OejXtKLa523QMNQlIzGZ+IfPudD3W6TPwoq11f+vO2ga6tFkmgs6pgbE+4bz1/C1vHxlq24hW1+ESTgx/HtaLRmCw9AOJMck4v71HtkaVwDTetXoe3ih7LzZnP40m9OfZ4fd+XtW/lzluckbaf7VIDr/PBFNA11ehsdx+/sjPNol/wxKw9rvN6OlpcnPP62QbSLRrYer3BrXatWqEBZeMGxsoK/Pls1rMDc3ISnpJV5eT2jXvh/37nvJZCytLNi3dxPGxkZIJPHcufuAFq16Ehpa8sY1/5a8cnKu27dvZ8OGDcTExFCrVi1WrlyJs3PxSxf/4datW3z22WfY2dm9kz0OlKRS6cfX31bAxIkTSUhI4NChQ0WuRUZG0qJFC5o3b86cOXMwMDDgwYMH2NnZUa9evSKbSLRp0wZ9fX3WrFlDamoqS5YswdPTkylTpjB//nzOnj1LUFAQzs7OGBoacu3aNaZOncrJkydp2LAhixcvxsXFBWtrayQSCdOmTcPR0ZGff/65iG0b6k1653VTHhzPLBrQ9F/l1uPdH9qEUtOwjuuHNqHUzFcpPk7hv0ZC6VfLfHBmxlx+s9B/hHiJ95uFSkm2a68yyaseOFEk7ejRo4wbN45169bRrFkztm/fzoEDB7h9+zaVK1cuNi+pVEqbNm2oXr06UVFR78S5flJzrsVRqVIlTp8+TVZWFj179qR169b88ssvqKoq7rhv3LiRlJQU2rZty6hRoxgyZAjW1gXrvvT19Tl16hS9e/fGycmJjRs3smHDBpydnVFRUUEqlTJp0iSaNGnCkCFDaNKkCStWrHhftysQCAT/efJyy3YoYtOmTbi6ujJ8+HBq1qzJ2rVrMTMzY+fOnSWWPWXKFL744guaNGlSoty/4ZPpuX6siJ5r+SN6ru8G0XN9N/y/9lyzBpat56rmJt9zzczMxMLCgh07dtC7d29Z+pw5c/D29ub06dMoYvv27Rw+fJjTp0/LVoK8i57rJzXnKhAIBIKPg3875xofH09OTg4mJvIbqZiYmBAbqzga+unTp6xevZoLFy6govJu38CEcxUIBALBe6e8AppKS0ZGBqNGjWL58uXY2Ni88/KEcxUIBALBeycv59/tuVSxYkVUVFSQSOQ30ZBIJJiaFl0mFx0dja+vL5MnT2by5MlA/qYaeXl5VKxYkcOHD9O+fft/ZdPrCOcqEAgEgvfOv+25qqur06BBAy5fviw353r58mV69So6n1upUiVu3rwpl7Zjxw4uX77Mvn375IJWywPhXAUCgUDw3snL/fe7BU+ePJnx48fj6OhI06ZN2blzJ9HR0YwcORKA8ePzNwfZtm0bampq2Nvby+kbGxujoaFRJL08EM5VIBAIBO+d8phz7du3LwkJCaxdu5aYmBhq166Nm5ubrBf6z5a1HwLhXAUCgUDw3snLK5/v3IwZM4YxY8YovHbq1KkSdefPn8/8+fNLlHlbhHMVCAQCwXvnfUcLv2+Ec/3AmJTDvMP7opNG8duJ/df4mDZn8Hx64EObUCrc6i1hs1LkmwX/A3xOJW4pp7xZ8D/C/optP7QJ753ymHP9LyOcq6BUCMf6bvhYHCvw0ThWQDjWj4C8T3xvQOFcBQKBQPDeET1XgUAgEAjKGeFcBQKBQCAoZ3L/5Q5N/3WEcxUIBALBe6e8luL8VxHOVSAQCATvHbEURyAQCASCciZX9FwFAoFAIChfxLCwQCAQCATljIgWFggEAoGgnBGbSAgEAoFAUM6InqvgvVJnWEfqj++OtqkBiX4R3Fi2j+i7vsXKWzSrhfPiwRjaWZIaI8Vr60m8910qyG94R+wHt0fPygSABL9wHmw4TuglL5nMhLB9CvN+svsC1xftLtHeDjP64fRFe7T0dQjzCuD44t+I9Y8o+R67NqHT7AFUtDYjPjSG89+74X3uvuz6ymDFWwLe2nOeE0t2vVHmr7lLSiz/dSbNGUP/oS5U0Nfj8QNvvp2/lkDfoGLlO/dsz+gpQ6lc1QpVNVVCn4exZ9vvnHA7LZM5d+8YltYWRXTdL9xg0pDZpbatrNz3esyuA3/g7RtAbFw83y6YRe8end5ZeSUxatZwXAb3QE9fj6eez/hh4QaC/IKLlW/3WRuGTPocSxtLVNVUCA+K4NCvRzhz+LxMpn7TerhOGEhNBztMLIxZMXM1p93O/Wtb+80YRHvXzujo6xDg6c9vi38hwj+sWHnLGpXpP+tzqtathqm1OX/8+Dt/rD8kJ6Opo8mA2a407tIUfWN9gp8GsWfpDp4/CiiVTbbDO1JzUg+0TA1I8ovAc8le4u4U/ztg0rwWDZYOQd/OkrQYKT6bTxK456LsuqqOJg7z+mPZrQkaFSsgfRKM5+K9JDx8LpePbjVz6i/8HNMW9iirq/IyIJJbkzfz0r/8t74UAU2C90b1nk1xXjqE6wt3EXXPjzrDOtJjz1wOtZ9HcmR8EXm9yiZ03z0Hn0PuXJy+BYsmdrRcMYK0+JcEnbkHQEpUAre/+52k4BiUlJSoOaAVXbbP4I/ui0nwyf8B2d1osly+JvWq0n3XHAJP3inR3tYTetJqTHcOz9lK3PMo2k/ry+h9C1jXfjaZKekKdawb1eCLjdP4+8cjPD17jzpdm+C6aTrb+i8lzCsQgBVNJsrpWDlUY/jOuTw+dVuWVhqZNzFqylCGT/yChdO+JTgwhAmzRvGr2wY+cx5EakqqQh1pYhLb1v9GkH8I2VnZtOncgm9+XEBifCLXLt4C4POuI1FWVpbpmJgZ43ZhF2dPXFSYZ3mRmpqGbTUbenXrwILl695pWSUxeNLnfDF+ACtmriYkMIyRM4ex/uAavmg9nNSUNIU6SYkv2PXTPkICQsnJzsG5YzO++n4u0vgkbl3Kb4faOlo89w3izJHzLP7pq3KxteeEPnQf68LWORuICoyk7/SBLNi/lNntJpNeTBvW0NJAEh7LvbO3GThH8T7WY1dPxrq2DVtnbyAhKp6WfdqwYP9S5nacRmJMQok2Ve7VjIbLh+IxfxeSu77UGN6R1vu/5GybL0mNKPo7oFPZhNb75hJ08Cq3p2zGxKkmjitHkBH/gvBT+b8DTdaNxcC+MnembSUtKoEq/VrQxm0+Z9t8SVp0oiyfDie+JuTwda6s/47MpBQq2FYiu5h6+Ld86gFNym8W+f/Cy8sLIyMjunTp8t7Lrje2G36Hr/Hs4BWkAZHcWLKH1Fgp9kM7KJS3H9Ke1BgpN5bsQRoQybODV/A7cp3647vLZILPPyDsyiNeBMeQFBTN3TWHyUpJx8yxhkwmTZIkd1Tt7Ig0MIqo2z4l2ttiVFeubDnB07P3iPEL5/DsLWjoaNLAxblEnee3vLmy6TiSwEiubDpO0O1ntBjVTSaTLEmSO2p3ckQSGEnQHZ8yybyJoeMGsePnvfx96jIBPs9ZOG05Orra9OjbuVidu9c9uHTGnaCAEMJCItj3qxt+3oE4Nmsgk0mMlxIvSZAdrTs6k/wyhXPv2Lm2dnZixoQRdG7XCiXlD/fDNXBMP/ZuOsiV09cI8g3m2xmr0NbVplMfxe0Y4MENT66du0FoYBgRIZEc3nGUwGfPqe/kIJO5dekO21bt4Mopd3Jzy2fCruvozzix5Sj3ztwm3C+ULbM2oKmjhbNL62J1nj8K4MCK3dw8fo2MtMwi19U01HHq1pzfV+3l2e2nxIRE88f6Q8SERNNxaNc32lRzfDeC3K7xfP9lXvpH8mDRHtJjpFQf3lGhfPVhHUiLlvJg0R5e+kfyfP9lgt2uUXNCDwBUNNWw6tGEhysOIbn1jOTgGJ6uO0pycIxcng5fDSTm6mO8lu0n8XEwKaESoi49JC2y5JeBtyUvr2zHx4ZwroXYu3cvo0eP5tmzZ/j6Fj8MU94oq6lg4lCVMPfHculh7o8xb1xDoY6ZY42i8lcfYVKvKsqqKkXklZSVqN6rGWramsR4+CnMU1Vbg+q9mvHs4OUS7TWsbEoFU0MCrhWUn52RRdBdH6o42hWrZ92wBv7X5G32c3+EdSPF96iurUH9ns2593vx9pRGpjBWVSphYmbMzSsFvfOM9Aw8bnnRoIlDCZryNG3VGBtba+7f8ipWpo9rT04eOUtGekap8/1YqWRtgbFZRe5eLRjmz0zPxOvOIxwa1yl1Po4tG2Jd3QqvO4/ehZkAmFY2w9DUiMfuXrK0rIxMfO4+xc6x1lvnq6KqjIqqClkZ8o43Mz2Tmo1rl6irrKaCYb2qRF+Rv+/oq48xLuZ3oGLjGkRflf+firryCKP6VVFSVUFJRQVlVRVyC9mTk56JidOr/1UlJSp1bkiSXwStD3yJy5MtdDrzDZV7NSvNLb8VObnKZTo+Nj4+i98haWlpHD58mBEjRtCrVy/27t0rd/3+/fu0bt0aMzMzWrVqxfnz5zEwMODatWsyGR8fHwYOHIiVlRW2traMHj2amJiYN5ataaSHsqoKaXFJ8jZJktA2MVCoo22iT5qkkHxcEipqqmga6cnSjGpZMdpnO2MDd9H6u5GcG7ueBJ9whXnW6O2MipoqvoevKbz+D3om+gC8LGRvclwSusXYC6BrYkCyAh29YnTqu7RARU2VB3+4F5tnaWQKY2xSEYA4ifxbeXxcAsamFUvU1dXT4e7zS3iGX2fzvnWsWvgD1y/dUijr3MaJylUs+WPf8VLb9jFjZGoEQKIkUS49QZKIkYlRibo6ejpc8DvF1eDzrN29kvWLN3L78t13Zqu+qQEASXFSufSkuCQMSmjDbyI9JR0/Dx96Tx2AoZkRSsrKtOjThhqN7DAwNSxRV/3V70BG3Av5PCVJaL76nyuMlok+6YV+BzLiXqCspoqGkR7ZKenE3fPDfkZvtMwNUVJWokq/FlR0rIHmqzrQNK6Amq4W9tN6EX31MVcHrSLkz1s02zQJiw4N3rouSkL0XP+POH78OJUrV6ZOnToMGjSI33//naysLACSk5MZNGgQdnZ2XLlyhW+++YYlS+QDZ6Kjo+nevTu1a9fm4sWL/PnnnyQnJ+Pq6kpu7ofb60saGMXhrgs52utrnu69SLsfx2NY00qhbG3XdgSff0B6wku59AYuLVj6dKfsUFEr2jN+Fzh93g7vCx6kFLKnrDI9+nXh7vNLskNV7e3DDVKSU+nXfhifdxnJhpXbmLtsOk1bNVYo22+IC489n+LrXbpAlo+Nzn06cMHvlOxQVTBiUlpSk1MZ0XksY3pM5Jc1O5j69UQcWzYsN1tb9G7NTu8DskNF9d2FnGye8RN5uXlsuruDPf5udB3Rg5snrpP3gbzE7albyMvNo5fnRvqH7KbG6C6E/nmzwGu9mkaIOPsAv21nkD4NwW/bGcJO3KHGqOKnSf4NuXlKZTo+NkRA02vs3buXzz//HICWLVuipaXF6dOncXFx4fDhw+Tk5PDzzz+jpaVF7dq1mT17NmPHjpXp79ixg7p167Js2TJZ2rZt27CxscHT0xNHR8diy05PeEludg5axvJvp1om+qRKpAp1UiVJaBV6m9Uy1icnK1vOOeZm5fAiOL/3HPc4GNP61ag3pitX526X061ob41p/WrcXe1WpCzvvz0I8ypwECrq+U1Hz1ifpNeCrXSN9Ukuxl6AZIkU3UL3qGusz0sFOhb2VbCqX51zaw8VuVYWGYDLZ6/xyOOp7FxdQw0AYxMjoiMKRhYqGhsRF1s0aOR18vLyCAvO7/n7PvWnmp0NY6cP5861+3JyRsaGtO/amm/nf19ifh8z18/f5KnnM9m5uro6AIYmhsRExsrSjUwMSZCUPHeXl5dHRHB+VKr/00BsbK0ZNnUwHtc9y8VWjwt3CfAsmA5RVc9vA/rGBsRHxsnS9Y31kZbQhktDbGg0ywctQkNLAy09baSxiUzdOJvY0OgS9TJf/Q5oGFeQS9dU0Dv9hzQFvVoN4wrkZmWT8ep3ICUklst9v0VFSwM1PS3SY6U03zqV5JDYgnKzsnlRKNL/RUAE1i7Ny3TvpaW8Apq2b9/Ohg0biImJoVatWqxcuRJnZ8VxHydOnOC3337j0aNHZGRkULNmTWbPnk337t0Vyv8bRM/1Fc+fP+f27dv0798fACUlJQYOHCgbGvbz86N27dpoaWnJdBo3lu+tPHz4kJs3b2JpaSk76tTJn2cKCip+eQfkO0DJ4yCsWtWVS7dqVZfo+/4KdWI8/BXKSx4FkZudU2xZSspKqLz6YXkd+8HteRESS/i1J0WuZaakEx8SIzti/SN4EZuIbcuC+UlVDTVsmtQkpJj5XIBQT39qtJS3uUbLuoQ+KHqPTl+0JyE0loDrRe0piwxAakoqYcHhsiPQNwhJTBzN2zjJZNQ11GnUrAFe9x6XkFNRlJWVZE7ldVwG9SAzM5PTR88r0Po0SE1JIyI4UnYE+QUTFxOPU+uCF0l1DTXqOznw+P7TEnIqipKyMmoK2unbkp6STkxItOyI8A8jMTYBh1b1ZTJqGmrUbGKPn0fpA+NKIiMtA2lsIjoVdKjXuiEe50se5s7NyiHxURDmbeTn/c1b1yWumN+B+Pv+mLeW/58yb+NAwsMg8gr9DuSkZZAeK0VNXxvztg5EnPOQlZvg9Ry96vJLyPSqWZASHse7oDx6rkePHuWrr75i9uzZuLu74+TkxIABAwgLU7yU6saNG7Ru3Ro3Nzfc3d3p1KkTQ4YM4ebNm+V+f6Ln+oo9e/aQk5ND3boFjfSfIZzwcMXzk4XJzc2lc+fOfPvtt0WumZiYvFH/0a9naL9+IrFez4m+70edIR3QMTPEe19+lGm7H8cDcHnmNgC8912i7ohOOH89BO/9lzBvbEfNAa35e8omWZ5NvxpEyCUvUiLjUdPVxNbFmUrNa3N6uHxvSlVTHdvezjzcerJU9wpwY+dZ2k1yQRIYSVxQFO2m9iEzNQOv4wUNdfT+BYQ/DOTcmkMynXFuS2gzsSfe5z2w79KYas3t2TZgmVzeaprqNHBpwdVtfxVbfmlkSmLvL4cYO304Qf4hBD8PZfzMkaSmpHLqNWe4/cjPPPH0Zv2KLQCMmzGCRw+eEh4Sgbq6Oq06OPNZ/26sXFB06Uu/wb048+ffpKUqXn5S3qSmphEant/zy8vNIyomFh+/QPQr6GFhbvpebABw2/4Hw6a6EhIQRujzMEZMH0JaShoXjhVES/906HueefqwdVX+6MmwaYPx9nxGZEgUaupqNO/QlK79OvHj4p9lOlramlhVtQTyX2jMKplSo051XiS+lOsll4WzO07iMrkfkYERRD2PpM/U/mSkpnPzeMH8/YIDywj08ufQmvz14CpqqljVyJ9WUdNQQ9/EkCr2NjLnDVCvdQOUlJWJDAzHrIoFrguGExkYztXDl4oaUQjfbWdo+vNEEjwDkdzzw3ZYBzTNDWXrVptumADAnWlbAQjcc5EaozrR8JshBOy9hEkTO2wGtub2pI2yPM3bOoCyMi/9I9Gtakb9xa68DIgi6PeC+/TZfJLm26YhueND7HVvTFvYY+3SjOsjf3yrun0T5TFAvmnTJlxdXRk+fDgAa9eu5eLFi+zcuZOvv/66iPzq1avlzr/66ivOnz/PqVOniu3tvi3CuQLZ2dkcPHiQr7/+usgSnPHjx7N//37s7Ow4ePAgaWlpst6rh4eHnGz9+vU5duwYlStXRk2t7G/cgX/dQdNQD8dpLmibGpDgG87p4WtJfrW2Tc/SWE7+ZZiE08O/x3nJEOoM7UBKTCI3vt4jW+MKoG2qT4efJqJtok/my1Tin4VxathawgtFF+ZHEWvg41b6oCD3rX+hpqlOr+UjXm0iEcjOoSvl1rhWrGJGUlTBMGvoA39+n/ozneYMpOPMASSExnBwys+yNa7/UK9nc9S0NfA4fLXY8ksjUxI7N+5FU1ODhavmUEFfj0cPnjJu0HS5Na6Vq1gRHVHww62to8Xi1V9iZmFCRnoGQQEhLJi6jDPHLsjl3aRFI2yqW/PV5KVvZdvb8MTHn1FT58nON+3Yx6Yd+3Dp1pEVi97d5hWF2b/5dzQ0NZi1Yhp6+np4ez5jhuuXcmtcLatUIvY1h6itrcWclTMwNc+v15DAMJZPX8XfxwucUa36Ndl4pOCHfszckYyZO5LTbmdZMXPNW9n619ZjqGuqM2L5WHQq6BLo5c/KIcvk1riaWZvLDRsbmhmy8kyBHeY2FnQc0gXvW0/49vPFAGjpafP5vKEYmVckOekl987c5tDa/eSUMKL0D2EnbqNhqIv9jN5omhqQ5BvOtSFrSX3Vg9S2lA+4SwmT4D5kLQ2XDaH6sI6kxSTiuXiPbI0rgJqeNvUWDELLwohMaTLhp+7xeJWbXM824qwH9+fuwH5aLxp+M4zkoGjuTNtK1EWvslVqKfm386iZmZl4eXkxdepUufT27dtz507Ja/RfJzk5GQMDg39liyKUpFLpRxiHVb6cOnWK4cOH4+fnh5GRfETj+vXr2blzJzdu3KBBgwZ06NCBWbNmER0dzYIFC/D29ubkyZO0bNmSqKgoWrVqRbNmzZgxYwbGxsYEBwdz7Ngxvv32W/T09IqUfbDu5CJp/0VCVD6ejy/+lfb8zUL/ETyfKt5p6r9I2/pjPrQJpaaKquLI2v8iLpnaH9qEUtPVZ3O55fWk5ugyydf13SF3HhUVRe3atTl16hQtWrSQpa9evZrDhw9z//79wlkU4ddff2XZsmXcvHkTa2vrMtnzJsScK/mBTK1atSriWAF69+5NaGgo9+7d4/fff+fZs2e0bt2axYsXM29efi9BU1MTAAsLC86dO4eysjL9+vWjWbNmzJkzB3V1dTQ0NN7rPQkEAsF/mdwyHuXN8ePHWbJkCb/++mu5O1YQw8IA/P7778Ves7GxQSqVys5fX9N66tQplJSUqFq1qiytevXq7Nmz553YKRAIBJ8Kefy7YeGKFSuioqKCRCKRS5dIJJialhxjcPz4cSZMmMDWrVvp1q1bibJvi+i5loEDBw5w8+ZNQkJCOHv2LPPnz6dr165UrFjypgMCgUAgkCc7T6lMR2HU1dVp0KABly/L78x2+fJlmjZtWmy5x44dY/z48WzevBkXF5dyv69/ED3XMiCRSFi5ciUxMTGYmprSpUsXli5d+qHNEggEgo+Of9tzBZg8eTLjx4/H0dGRpk2bsnPnTqKjoxk5ciSQH5AK+fsNAPzxxx+MHz+e5cuX4+zsLNs9T11dHUPDknfPKivCuZaB6dOnM3369A9thkAgEHz0lMc8at++fUlISGDt2rXExMRQu3Zt3NzcZHOohZdR7ty5k+zsbObPn8/8+fNl6S1atODUqVPlYFEBwrkKBAKB4L1THj1XgDFjxjBmjOJI9sIOs7wdaEkI5yoQCASC987Hs7jv7RDOVSAQCATvHeFcBQKBQCAoZ8prWPi/inCuAoFAIHjv5H7avlU4V4FAIBC8f3JFz1XwLolU+Ti2dtb+iD5WPF/F9kObUGo+pv16rzzc/mah/wgvho/80CaUmgf3i36u8P+Bj+OX7+0RzlUgEAgE751spY/nhf1tEM5VIBAIBO8d0XMVCAQCgaCcEUtxBAKBQCAoZ0S0sEAgEAgE5YyIFhYIBAKBoJwRc64CgUAgEJQzYlhYIBAIBIJyRgQ0CQQCgUBQzohhYYFAIBAIyhkxLCwQCAQCQTmT/aENeMf8XzvXHj16YG9vz9q1awFwcHBg3LhxTJ069YPa1W5GXxy/aI+Wvg7hXgGcXLwLiX9EiTr2XZvQfvYAjKxNSQiN5eL3bjw7d192vc/342nYv7WcTphnAL/2+Vp2rmuiT+f5rlRvVRcNXS0SgqO5vvUkj47fLLbc1jP60si1PZr6OkR4BnC2FLbW6taEtrMHYGhtSmJoLJfXuuH7mq1tZ/endvemVKhkRE5WDtFPgriy7gjhHv4ymaG/L8Smub1cvk9P3OLo1I0Ky6wxvCP2E7ujZWqA1C8CjyX7kNz1LdZG02a1aLR0MAZ2lqTGSHm2+ST+ey/JrispK+Ewux9V+zmjZWpAWqyU4KM3ebTuKHk5+bNJ9eb2x7qnEzqVjMjJzCHxcTAP1x4h7r5/ccWWyKhZw3EZ3AM9fT2eej7jh4UbCPILLla+3WdtGDLpcyxtLFFVUyE8KIJDvx7hzOHzMpn6TevhOmEgNR3sMLEwZsXM1Zx2O/dW9pWF+16P2XXgD7x9A4iNi+fbBbPo3aPTOy/3dTR69Ear7+coGxmRExpMyi8byX766I16qvYOVFi1npywUJImF+xhrGJtg9bgkaja2qFiXonU/b+RdmBXudhqNaIzNpN7om5qQIpvOL6LdyO946NQVt3UALtlQ6ngUBXtahZEHXbn6fQtReRUdLWwnT8Is8+aomaoR3pkPAHfHSTmxO1ysflNfETblb8Vn7RzjYuLY+XKlZw/f56YmBj09fWpXbs2M2fOpF27duzbtw9V1bJVwePHj/nuu+/w8PAgKSkJExMTGjZsyIoVK7C2tv7XNrec8BnOY7pzbM424p5H0XZaH4bvm8+G9nPITElXqFO5kS0DNk7l8o9/4H32HvZdmzBw0zR29F9GuFegTC7w2mP+mFXwT5aTKf/u2HfdRLQMdDg49gdS4l9Qu0sT+v44kaSoBCIV/CM7T/iMZmO7c2LONuIDo2g9vQ+D989nc7vibbVsZEu/jVO5+uMf+Jy9R62uTei/eRq/9VtG5Ctb459HcWbJLqShsahpqtN0TDdcd89jU9tZpMS9kOXl5XaFS2vcZOfZ6ZkKy6zSqymNvxnC3fm7kNz1w25ER9rtn8vJtvNIjYgvIq9T2YR2++YQ+Ls7N6dswcTJDqeVI0iPf0nY6XsA2E/uid2IjtyasQ3pszAM7K1pvn48OZnZPFn/JwAvAqO4t2A3KaGxqGiqU2tcN9rv/5ITLWaT/tp9lIbBkz7ni/EDWDFzNSGBYYycOYz1B9fwRevhpKakKdRJSnzBrp/2ERIQSk52Ds4dm/HV93ORxidx69IdALR1tHjuG8SZI+dZ/NNXZbLp35CamoZtNRt6devAguXr3lu5/6Deqh0646aSsvlHsr0fo9GjNxWWrUY6cTi5kthi9ZR0ddGdvYAsrwcoVzSWv6ihSW5sNKk3r6E9bHS52Wrm0pya3w7H56sdSO/4YjWyMw0PzudWq1mkK2i/yhpqZCW8JOjn41gN7aD4PlRVcDy8kKzEZB6NXU96VAKaFkbkZr6//uSnHtCk/KENeJcMHToUDw8PNm7cyP379zl06BCdOnUiISEBAENDQ/T09EqdX1xcHC4uLujq6uLm5sbdu3fZunUrVatW5eXLl+Vic/NRXbm25S+8z94j1i+co7O3oqGjST0X52J1mo3qRvAtb9w3HScuMBL3TccJvv2MZqO6ysllZ2aTLEmSHWlJKXLXKzvW4O7eC4R7BZIYJuHm9tO8iEzAqn41heU6je7KzS1/4XPmHhK/cI7P2oq6jiZ1S7C16Stbr288TlxAJNc35tva9DVbHx+7QfCNp0jDJEj8Izi/fD8aelqY2VeRyysrLZMUSZLsyHip2MnUGteN527XCDxwhRcBkdxftIe0GCl2wxT/8NQY1p7UaCn3F+3hRUAkgQeu8PzwdWpP6C6TMWlcg4gLnkRc8CQlPI6I8w+IOP8A44bVZTLBR28Qc/0pyaESkvwi8Fi6HzU9LQzrVFFUbIkMHNOPvZsOcuX0NYJ8g/l2xiq0dbXp1EfxPQA8uOHJtXM3CA0MIyIkksM7jhL47Dn1nRxkMrcu3WHbqh1cOeVObu77CzFp7ezEjAkj6NyuFUrK778Lo9lnIBl/nyXj3ElywkJI3foTuQkJaHZ3KVFPZ/o8Mv4+S7bP0yLXcvx9SN2xhcyrf5OXrvjl8m2oMqEHkYeuErHvEin+Efgu+I3MmESsRnRWKJ8eJsF34S6iDl0lS5qsUKbSF21Rq1gBr+Frkd71JT1MgvSuLy9eexl/1+SW8SiO7du3U69ePczMzGjTpg03bxY/0gZw/fp12rRpg5mZGfXr12fnzp3lcDdF+WSdq1Qq5datWyxdupQ2bdpgbW1No0aNmDp1Kv369QPyh4Xnzp0rp5ecnMy4ceOwtLTEzs6On3/+WXbt9u3bSKVSNm3aRIMGDahSpQotW7bkm2++oU6dOgCEhIRgYGDA4cOH6dq1K2ZmZjRp0oRLly7xJgwrm6BnakjAtceytOyMLELu+lDZsUaxepUb2srpAAS4P8K6kZ1cmnUTO768v5lpl76n18ox6FSsIHc99L4vdXs0Q8tAFyUlJWp1ckS7oh6BN4r+kBi8sjXQXd7W0Ls+WJVgq1UjW54XsvW5+yOsHO0UyiurqdDItR3pL1KJ8Q6Ru1anZ3Nme25lwoXVdFzoirqOpkJ9o3pViboqX2a0+2OMGyu208SxBtHu8vJRVx5RsX5VlFRVAIi954dZi9pUsLUAoEKNSpi1tCfi0sNi76PGkHZkvkgl8WmIQpniqGRtgbFZRe5eLRg6z0zPxOvOIxwa1yl1Po4tG2Jd3QqvO28e+vykUVVF1daOLM97cslZnvdQrV23WDWNHr1RNjAk7dDed22hDCU1FfTqVSP+ivwzi7/yCIPGiv9nSoNp1yZI7/pS67tRtH68jebu66g2p7+sfb8P8sp4KOLo0aN89dVXzJ49G3d3d5ycnBgwYABhYWEK5YODgxk4cCBOTk64u7sza9YsvvzyS44fP17Od/cJDwvr6uqiq6vL6dOnadasGZqaRX94FbF582amT5/Ol19+ybVr1/jyyy+pUqUKvXr1wszMjNzcXI4fP07//v1RKuGTSV9//TUrVqygTp06/Prrr7i6uvLgwQMqVapUvM0mBgCkxCXJpSfHJVHB3KhEvWQFOrom+rJz/6sP8T57j8QwCYZWxnSYM4ARBxawteci2fCw2+SfGfDzFOZ7bSMnK5vszGyOTNtEtHcIaoXLNFVsa0pcEnpmJduaIimkI5G3FaBG+4b03TgFNS11XsZK2T9kpdyQ8JPjN0mKiCM5RoqJnSXt5g3CtJY1B4aukstHw0gPZVUV0guVmSZJwryV4h9STRN90q49kUtLlyShrKaKhpEe6bFSvDf+hZqOJp9dWU1eTi7Kaqo8Wf8n/rv/ltOz7NiAFlumoKqlTlqMlEufryrzkLCRaX59JkoS5dITJImYmBsrUpGho6fDnx5uqKurkZOTyw8Lf+L25btlKv9TQ6mCPkoqquQmJsil50oTUWvgqFBHpUo1tL8YTtLsiZD7/gY01Y0qoKyqQmah9pspSUK9tUMxWm9Gq4ophi3rEH3sBp6DV6FV2YRaq0ajoqOJ/7J9/9bsUlEe0cKbNm3C1dWV4cOHA7B27VouXrzIzp07+frrr4vI//bbb5ibm8vibGrWrMn9+/fZuHEjLi4lj1qUlU/WuaqqqrJp0yamT5/O7t27qVevHk2bNqV37940bty4WD1HR0fmzJkDgK2tLQ8ePGDz5s306tWLJk2aMHv2bCZOnMicOXNo1KgRLVu2ZMCAAUXmW0eNGkWfPn0AWL16NZcuXWLnzp0sWrRIJqOmpsbCpztk5/tHrS3PKpDjyV8FQQqxvmFEPg5i1o2fsGvXQBb41GH2ALQN9djl+h0piS+p3bkxfddNYMeg5VSys6LHdwXzSAdHvjtbAYJvefNLtwVoG+nR8It29Ns0jd/6LiU5VgqA58HLcveTGBrL6BPLMa9rA55l6xm+DVVcmlF1QEtuTN5Mkm84hnWq4PjNUJLDJAQevCqTi77xjNOdFqJhpIvt4Ha03DaVcz2Xkf7qPhTRuU8H5q6eJTufO2z+W9uZmpzKiM5j0dbRwrFlI6Z+PZGo8Gg8rnu+dZ7/d6iqofvV16Ts2EJuTPSHtqZ8UFYiM+4F3rO2QW4eLx8FoWakR81vhr0/5/ov9TMzM/Hy8ioSgNq+fXvu3LmjUOfu3bu0b99eLq1Dhw4cPHiQrKws1NQKdyPenk/WuQK4uLjQpUsXbt26xd27d7l48SIbN25k8eLFzJ49W6FOkyZNipz/9ddfsvPFixczefJk3N3duXfvHnv37mXdunUcPHiQNm3aKMxHWVkZR0dHfHzkg4KysrL4pdcy2bmKev7j0DHWJymyIFBB11iflxJpsfeZLJGiayzf89M11ie50Nvu67yMlfIiOoGKVc0BMLQ2pdnILmzqNp+YZ6EAxDwLpUqTmjQb3pm/v9lHhGfBfIzqa7a+eM1WHWN9kt9gq06hXqqOSVFbs9IySAyJITEkhgjPACZdWUfDz9tybcOfCvONfBREbnYORjbmpL/mXDMSXpKbnYNmoTK1TPRJK8bBpUuS0Cokr2miT25WNhkJ+XPrDRd/wbMtpwk5nv/SIvUJR8fKmDpTesk515y0DJKDY0gOjiH+QSA9r3+PrWtbWdCTIq6fv8lTz2eyc3V1dQAMTQyJiSwItjEyMSRBklBE/3Xy8vKICI4EwP9pIDa21gybOvj/2rnmvUgiLycbZUP5ERZlA8MivVkAZaOKqFrboDtzHsycl5+opIySsjJGJy7y8ut5ZHneL6JXHmQmvCA3Owf1Qu1R3USfzBJe0N6Yb4yU3OwceG2ePcUvAhVtTdQq6pEVXz4xJCXxb51rfHw8OTk5mJiYyKWbmJgQG6s4KC02Npa2bdsWkc/OziY+Ph5zc/N/aVUBn+yc6z9oamrSrl075s2bx/nz5xk6dCirVq0iM1NxZGlpMDIyonfv3qxYsYK7d+9ibW3NmjVr3iqvhJAY2SHxj+BlbCK2LQuGK1U11LBuUoswj+KXb4R5BlC9pfwQUfWWDoQ+8CtWR9tQFz0zI16++gdV09IAkC0j+Ye83FyUlJXITEmXObvE12yt9trQqsorW8NLsDX8QQBVC9lataUD4R7F2wr5S19U1It/qzSrVRllVRVZz/YfcrNySHgUhHlr+SFg81Z1i10SI/HwLzJkbN66LvEPg8jLzgFAVVOdvELDg3k5ufCG4Jz8+yj5nTY1JY2I4EjZEeQXTFxMPE6tC4Ys1TXUqO/kwOP7RefDSy5fGbUS6vH/guxssgP8UGsoP4Kl1rAx2c+eFBHPjZcgnTSCpKljZEfGmRPkRISTNHUMWc/K9gzKQl5WDi8fPadiG/n/GaM2Dkjvl/w/UxLSe75o25jBa1Nb2tUtyElNfy+OFcpnzvW/zCfvXAtTs2ZNsrOzSS8mmu/+/ftFzmvWrFlsfurq6tjY2JCSIh95+3o+eXl5PHjwoMR8/uHWzrO0nNCT2l0aY2pnRZ/vx5OZmi631nTE/vl0/HKQ7Pz2zrNUdban1cSeGFe3oNWkXlRtXpvbO8/m26itQZcFrlRuZIuBlTE2zWozeMccUuJfyIaE4wIjiQ+K5rPlI7GsXw1Da1Ocx3SnWsu6cutlX+fujrM4T+hJra6NMbGzwuWVrU9es3XIgfm0f83Wu7/l2+o8sScVq1vQYlIvbJrX5s4/tupq0XbOACo1qE6FShUxr2tDz7VjqWBuhPfJ/F6iobUprab1wcKhKvpWxti2q0/fjVOIehJE2P2ia1d9fjlDtYGtqe7algq2lXD8Ziha5ob477kIQPOfxtP8p/Eyef89l9C2MMRx2RAq2Faiumtbqg1szbOtp2Uy4Rc8qTO5J5U6NEDHyhirro2pNb4b4Wfy60pVV4v6X/anYsPqaFtWxMjBhmY/jEXbwoiQvxQPWZWE2/Y/GDzpc9p0a0XVmjYs/HEeaSlpXDh2USbz06HvmfDVGNn5sGmDadyqEZWsLahia83n4wfQtV8nzh8tmBfW0takRp3q1KhTHWVlJcwqmVKjTnXMKpmW2caykJqaho9fID5+geTl5hEVE4uPXyBR0cUvgylP0o+5odGhKxqde6BSuQra46aibFSR9NMnANCdtQDdWQvyhXNyyAkJkjtypYnkZWWSExIE6a+i1FVVUalmi0o1W5TU1VE2NEKlmi3KFpb/ytaQraeoNKgtloPbo1PDkprfDkfD3Ijw3RcAqPPzZOr8PFlOR7dOFXTrVEFVVxs1Q11061RBx67AjrBdF1Az1KXmihFoV7egYtv6VJ87gLDfzvO+yFUq21GYihUroqKigkQikUuXSCSYmipuv6ampgrlVVVVqVixYrndG3zCw8IJCQkMHz6cIUOGUKdOHXR1dfHy8mLDhg20adOGChUqKNS7f/8+P/zwAy4uLly/fp3ff/+dX3/9FYCzZ89y9OhR+vbti62tLXl5eZw9e5YLFy4wf778vNjOnTuxtbXF3t6e7du3ExYWxqhRo95o9/WtJ1HTVOez5SPyN2bwCmTP0FVy60YNq5iRFFUwfBX2wJ/DUzfSYc4A2s3sT2JoDG5Tfpatcc3NycWsVmXq922JZgUdkmOlBN325tDkDbJ8c7Nz2DtyDZ3mfc7g7XNQ19EgISSGP+f+gu9FzyIBTQA3t55EVVOdrstHoFUh39b9QwrZam3Gi8gCW8M9/Dk6dSNtZw+g7ax8W49O+Vm2xjU3OweTGpY0GNgGLQNd0qTJRD58zu6By4n1yY8AzMnKpmqLOjiN6oK6tiYvouLxv+SF+/qj5OXmQaHvRIacuIO6oR51p7vkbyLhG86VIWtJebVGUMdSPigoJUzC5SHf47hsCDWGdSAtJhGPxXtka1wB7i/aQ/0v++O0cgQaFSuQFislYP8VHv94DIC8nBz0a1pR7fM2aBjqkpGYTPzD51zo+y3SZ4ojGUti/+bf0dDUYNaKaejp6+Ht+YwZrl/KrXG1rFKJ2NeGjbW1tZizcgam5iZkpGcQEhjG8umr+Pt4QeR6rfo12XjkR9n5mLkjGTN3JKfdzrJi5tuNxpSGJz7+jJo6T3a+acc+Nu3Yh0u3jqxYpHjKpjzJvHaZlAr6aH0+FGWjiuSEBPHi63nkSmIAUDYp+8uFspExBj8XxFCoVLJCs7sLWY88eTF/xlvbGnP8FmqGelSd0QcNM0OSfcLwdF1FengcAJqWRZ1C80vyz86kS2PSQmO53iR/fjIjMp4Hg77DbtlQml1cQ6ZESuTByzz/8ehb21lW/u2wsLq6Og0aNODy5cv07t1bln758mV69eqlUMfJyYmTJ0/KpV2+fJmGDRuW63wrgJJUKv0Ye9xvJCMjg9WrV3P58mWeP39OZmYmFhYWdO3alblz52JoaKhwhyZXV1cCAgI4e/Ys2traTJ48mRkzZgD5Ydw//fQT169fJyIiAlVVVaytrXF1dWXixIkoKSkREhJC/fr1+eWXX9i+fTsPHz6kcuXKrFy5kk6diu5As67+pPdZLW+N2kfUSqplfTxbv2xWivzQJpSaKw+3f2gTSs2L4SPfLPQf4cH98pvne9c4+f1SbnltrFe2374pjzYXSTt69Cjjx49n3bp1NG3alJ07d7Jv3z5u3bqFtbU148fnj0ht27YNyP8Nd3Z2ZtiwYYwcOZI7d+4we/Zstm/fLqKFS4uGhgZLlixhyZIlxcqcOnVK7vzx48fFSOZjY2PDjz/+WKLMP9SoUYPz59/fEItAIBB8TJTHgqa+ffuSkJDA2rVriYmJoXbt2ri5uclWb4SHh8vJ29jY4ObmxoIFC9i5cyfm5uasXr263B0rfMLOVSAQCAT/XcprMGzMmDGMGTNG4bXCHSiAli1b4u7uXk6lF49wrgKBQCB473zqewsL51rOVKlSBalU+qHNEAgEgv804nuuAoFAIBCUM7kf5erV0iOcq0AgEAjeO5+2axXOVSAQCAQfADHnKhAIBAJBOSOGhQUCgUAgKGc+bdcqnKtAIBAIPgDZn7h7Fc71A6P/kcSjm2d/aAtKT4LKh7ag9FRR1n+z0H+Ej2lLwQq7f/vQJpSaCvXmfGgTPgiftmsVzlUgEAgEHwAR0CQQCAQCQTmT94n3XYVzFQgEAsF7R/RcBQKBQCAoZ8RSHIFAIBAIyplP27UK5yoQCASCD4DouQoEAoFAUM6IOVeBQCAQCMoZES0sEAgEAkE5kyOcq0AgEAgE5cunPiys/KENEAgEAsH/H7l5eWU6/i0ZGRnMnTuXatWqUalSJT7//HMiIiJK1Pnhhx9o164dlStXpnr16gwaNAhvb+9SlSd6ruVISEgI9evX5/LlyzRs2LDUes1n9qWeazs09HWI9gzk4uJdxPuV/NBrdGtCizn90bc2JSk0lutrDhNw7n6Z8m06pRdV2zfA1N4aNW1N1lkPkdOv078VXX8Yr7D8M92WULFBNewndkfL1ACpXwQeS/YhuetbrM2mzWrRaOlgDOwsSY2R8mzzSfz3XpJdV1JWwmF2P6r2c0bL1IC0WCnBR2/yaN1R8nJyUVJVof68/lRqVx89G1OyXqYTc9Mbz+8OkRoRX2J9OQzrSMPx3dExNSDBL4Jry/YRWYKtlZrVotXiwRjZWZISI+XB1pM82Vdga6WmNWk4vgemDjbomhtxYdY2fA5fk8tDTVuD5l8NonrXxmga6vIyIp4n+y7itf1sibYWR78Zg2jv2hkdfR0CPP35bfEvRPiHFStvWaMy/Wd9TtW61TC1NuePH3/nj/WH5GQ0dTQZMNuVxl2aom+sT/DTIPYs3cHzRwFvZaNGj95o9f0cZSMjckKDSfllI9lPH71RT9XegQqr1pMTFkrS5II9jFWsbdAaPBJVWztUzCuRuv830g7seivb3pb7Xo/ZdeAPvH0DiI2L59sFs+jdo9N7tcF0eFcsJrqgbmpIml8YIUt28vLuM4Wyht2aYjasC9p1q6KsoU6aXxgRG/5Aev6eTMbEtSPGA9qiXdMalJRIffKcsLUHSb7r875u6b0PCs+fP5/Tp0+zY8cODA0NWbhwIYMGDeLq1auoqCjekPz69euMHj2aRo0akZeXx3fffUfv3r25c+cOhoaGJZb3SfdcJ06ciIGBAQYGBhgbG1O/fn0WLVpESkrKhzZNRpOJn9F4bDcuLdnD/s+WkBr/gv77v0JNR7NYHYtGtny2aQrPjt1gb7eFPDt2g55bpmLeoHqZ8lVRV8P/zD08dpxTWI7vX7fZ4jiZLY7/a+++w6I4GjiOf6lHUSlSFRRRxKCI2CuxKxqjeS2x9941iR0JlhijibGXaOwNMfZYYlQUOyoWVEBB6V2QInBwvH+QnJ4cChE9xPnkuefJ7s3u/cDj5mZ2ZnYc+53yHiFePqQ8iaFsZVPqz+vPvRWH+bP9HOJ9g2i18zv0KpZXei59a1Na7fiWeN8g/mw/B/+Vh6m/YCDWnRrIyziM60L1wW3xddvOEZdp+M7dgd3gdtSc8CUAmrraGDva4L/iEH92cMN7yC/oVShP653TUNMo+K1s16URLb7vz41Vh9njOoeoG0F02fYdZSooz1rO2pQvt35L1I0g9rjO4cbqw7jMG0hV15dZtfR0SAwI57z7dqQvMpWep/ncfti0rsOpSWvZ0WoavisP0XTG19j/r1mBWQvSZfRXdBrRlS3uvzGnyzSeJyQza+f36LzhfSLRlRAXHovn0l3EhkYrLTNi8Thqf+7Mum9WML39ZO6e92PWzu8xMjcuckbtFq3QHzmBF547SJ44AukDf8p5LEbd1OyNx6mVKUOZb2Yh9bup5IfQQRYbTfq2TeRERxY5U3FIT39BNVsbZkwehY5E8sFf3/jLZlSeN5TIFfu52/4bUnwDsN85B+2KJkrLl2tSk+SLdwkYsJC77b8h6cxNqm+aRtmGn70s07QWiYcv8qCXO/5fTOfF40hq7JqLpIrlh/qxkJFbpMe7SE5OZvv27cybN49WrVpRp04d1q9fj7+/P+fOnSvwuD/++IP+/fvj4OBAzZo1Wb9+PfHx8Vy5cuWtr1mqK1eAli1bEhAQgJ+fH3PmzGHTpk24ubn9p3NJpdJiTgd1h3Xk2pojBB2/TkJgOCemrENbX4fPujUt8Jh6wzoSdvk+V1cdJvFRJFdXHSbsygPqDetYpPNe+mU/N347Tqz/E6Wvk50pJT0umfS4ZDLikpGmvqBiO2ce7/amxkhXgj0v8HjXOZ4/isR3zjZexCRRfWAbpeeyG9ia9OgkfOds4/mjSB7vOkfwPh8+G91JXsa0vh0Rf90i4q9bpIXHE3HqJhGnbmLinPelQZrygjO9F/P08FVSHkeR4BfM1WmbMKheEQO7CgX+vuqMcOXhvgv47z7Hs0eRnJ+7jfTYJBwHKM9aq39r0mKSOD93G88eReK/+xwPvXxwHvUy69Ozt7m82JPHf14nV6b8D9+yvh0Bf/gQcfkBKeHxPNzvQ/StR1g4V1Va/k06DvuCw2v/4PrxK4QHhrJ26gp09HVp2tWlwGOC7zxi18KtXDp0gcwXWfme15Jo09C1CXt+3M6DK/7EPI1m/697iXkaTdsBHZWc8c10vupF5ukTZJ48Sk7YU9LXLUeWmIhOp65vPE5/0nQyT58g+6F/vudygh6SvmktWd6nyc3IKHKm4uDStCGTRw+mfasWqKl/+LtYWY7sQrznWeJ2nSbjUQRP52xEGvMM84EdlJZ/Ovd3olYdIM3vEZlPoon4xZO0O8EYdWwkL/N4/K/EbD5O+r0QMh5H8mTGenJSX2DYqvA9bu8qt4j/vQs/Pz+kUimtW7eW77OyssLe3p6rV68W+jypqanIZDIMDQ3fWrbUV64SiQRzc3OsrKzo2bMnPXv25NixY+zdu5dWrVphZWVFtWrVGDRoEJGRL78ZX7hwAUNDQ06dOkXr1q0xNTXl77//Jjc3l5UrV1K3bl3MzMxwcHDAw8ND4TVDQ0Pp1q0blpaWNGrUiLNnzyrNpqamRhkzQ56cvyffl50pJfxqABXq2RX4M1nWraZwDMAT77vyYwwqmf6n875N5S6N0NSTEOzlg3HtKkR531V4Pvr8XUzqKz+/aT07os8rlo86d4fyTlVQ08zrkom9Hoh5s88oVy3v23M5uwqYN3cg4sztAjNpldUFIDM5Xenz6loamDlWIfS11w49fxfLArJa1LPLX977Dma1q6CuWfj72UVeC8SmbV3KWBrLz2viUJmn597eTfoqM2tzjMyMuXveT75PmpnFw2v+VK9Xo0jnepWGpjoamhpIMxUr3qyMLOzrf1bAUQXQ1ESzWnWkt64r7Jbeuo7mZ7UKPEzSuRvqhka82Lu9aK/3iVDT0kS/dlWSvf0U9iefv02Z+oX/t9coo0t2cmrBr6OtibpEm+ykgssUN1kRH+8iNjYWDQ0NypdX7K0yNTUlNja20OeZMWMGjo6ONGzY8K1lS33l+jodHR2kUilZWVnMnDkTHx8f9u7dS0JCAsOGDctX/vvvv2fOnDlcv36d+vXrM2/ePJYsWcKUKVO4cuUKW7ZsoWLFigrHLFiwgFGjRuHj44OzszNDhw4lNTX/m1ZdPe/Xnx6frLA/PT4ZfdOC7/Opb2qo9Bi9f47RNzX8T+d9m2r9WxFx2g9kMtQ1NciIUzz/i7hkdM0MlR6rY2rAi9fKZ8Qlo66licS4LAD3Vx0hxOsiX5xbTJ+nW+ji/RMhnhcI2npa6TnVtTSo596P8FM3eRGVqLSMrnFZ1DU18v8u4pLRM1WeVc/UgPS4/L87DS1NdP7JWhjn3bcR/yCUIddWMDZ4C//bN5tLi/bw5G+/Qp8DwOCf32lyfJLC/uT4ZAwL+BkKIyMtg8AbD+k2oSdG5saoqavT7KvPsatbHUOzN19Pep1aOQPUNDSRPVP8d5AlPUPdSHkXs0ZlW/T6DCJ16QKQlfaxo/+NpnFZ1DQ1kL72fpTGJaFVwN/a68wHd0TbsjzxXt4FlrGa3hdZWobCddn3rTi6hRcsWCC/9FfQ48KFC0qPLapZs2Zx5coVtm/fXuA12ld9UgOabty4gZeXF59//jkDBgyQ77exseGXX36hYcOGREREKFSW06dPl3clpKamsmbNGhYtWiQ/3tbWNt+3mLFjx+Lq6grA3Llz2bNnD3fv3sXFxQVdXV15uZJ07fdtDKpXxLR+dc72X/LeXqNy18ZU6dmci+PWkBwQjlHNytSbN4DUsDge71b8YFDTUKfpyrFoldPj3OBf3lumd+E0pD2W9ew4MuRnUsLjqdioBs3m9OV5eDyhb2i9NuvmwrAfRsu3fxqy8L1lXDN5OaOWjGf1tU3kZOfw5F4wlw77UMWx6F3XRaKpRZkZ7qRtWossRvn1YOHdGXVqjLXbIB6N/pmsiDilZcyHdca8f3sefP09OakvPli24lhEYsyYMfTq1euNZaysrLh+/To5OTkkJCRgYvLyWnVcXBxNmjR56+vMnDmTP/74gyNHjmBjY1OobKW+cj19+jQVK1YkOzsbqVRKp06d+Omnn/Dz82Px4sXcvXuXpKQkcv8Z6h0eHq5Qub466jcgIIDMzEw+//zzN75mzZo15f9vaZnXxRkXF4dUKiUnJydfeT0TA1IiExS20177pvqqtLgk9EwUW6B6Ji9bW2lxSf/pvG9SrX9r0iLiiTx7B3VNdWTZOei81grWNTXgRWyS0uMz4pLRfa28jqkBMmk2mYkpADi79eHB2j95eihvsEDSw3D0rUyoOf5LhcpVTUOdZmvGYfiZNae7LyTrWcFdWS8SU5Bl5+T/fZkakB6nPGteqzb/7zdHmk3GP1nfRkNHiybTv+b4mBU8OX0LgISHYZjUrEzdkZ3eWLne+Osaj24Fyrc1tbUAMDAxJCEyXr7fwMSApAJ+hsKKDY1m/tdzkOhK0C2rR1LsMyas+qbAAVAFyX2eTG5Odr5WqrqhUb7WLIC6cXk0K9lQZsp0mDI9b6eaOmrq6hgf/psU9+lIb/nmO+5Tk52YQm52DlqvvR+1TA2RFvC39i/jzk2wXTGR4IkrSPpL+e/SYvgXWE3rw8P+80nz+28jxP+r4uirKF++fL6uXmXq1KmDlpYWZ8+epWfPngBEREQQEBBAo0aN3njs9OnTOXDgAEeOHKF69eqFzlbqu4WbNm3KhQsXuH79OjExMezYsQM9PT26d++Onp4e69ev58yZM3h5eQGQlaV4/UlfX7/Ir6mlpSX/fzW1vAEQ/1beMplM4ZEam0TlFi+vSWlItKjY0J7IG0EFnj/q5iOFYwAqt6glPyY5NO4/nbcgGhItqnRvxuM95yE3F5k0h8Q7IVi4KGawaFGLeF/l54+7EYTFa5ktXGqRcDuE3Oy8LxyaOtrkvtY9mJsjg1cGkahpatB83XiMHCpxuscP+bqmXyeT5hB7NwTr117bukUtogrIGn0jSGn52DshyLLzfzlSRl1TEw1tzbz8b/h5lMlIyyDmabT8EREUxrPYRBxbOMnLaEm0sG/gQOCN4pk6kfkik6TYZ+iX06e2izM3Tl0r2gmys8l+FIiWc32F3VrO9cl+cC9fcVlCHEljB5M8Ybj8kXn8MDkR4SRPGI70Qf7BTZ+iXGk2aXceY+DipLC/XAsnUn0L/rc37tKUqismEjx5JYnHListYzGyC1bT+hAwYOEHnYLzr9zc3CI93oWBgQEDBgzA3d2dc+fOcfv2bUaNGkXNmjVp2bKlvFyDBg3YsGGDfPvbb79l165d/PbbbxgaGhITE0NMTIzSy3yvK/UtVz09PWxtbRX2BQUFkZCQgJubm7yJf/jw4beeq3r16kgkEry9valatXi6zW5uOkGjcV+S+DiSZ8HRNJ7YFWl6Bg8OXpKX6bF7JtF+j/FZ7Jl3zO8n+XrfHBqO7cKjk75U61gf6yafsaf7/CKdt2yF8ugY6mNgZQqAqUMlAJKexCBNfzm9pHqnhmiV0+Pxnpetx4cbjtNkxRgS/IKJuxaI3cA26FoYEbTtbwCaLM+bH3t50noAgradwX5IO+p59Cdo+xlMG1bHtpcLF8eulp8z/K9b1BzXhdTQuLxu4Vo21BjlSsg+HyCvxdpiwwTKO9nmdQXn5spbz9KUdHIylI/m9vvtOO1+HUOMXzBRvoHU6t8GfXMj7u3Iy9puWV7Wv6bkZb234wy1B7ejhXt/7u08g2X96nzW04WT419m1dKTYGBjnpdLXY2yFcpj4lCJjKQ0UiMTkKa+IPzyA5rO/BppWiYpEfFUaFyDGj2ac3Hh7oLfEAU4sekoXcd1J/JxBFHBkXw1oQeZ6RlcOnReXmbWLg8e+wWx96cdAGhoaWJlZ5WXV6KFgakRlR1s5JU3QG2XOqipqxP5OBzzypb0nTWIyMfheO87kz/EW2Qc8KTMN7PJDnhA9oN7SFy/RN24PBl/5v1tlZk6C4DUX36AnBxynoYoHC9LekauNEtxv6YmGpVsAFDT1kbdyBgN22rkvniBLOrNc8GLS3r6C0LD8wY75spyiYqJ5WHgYwzKlcXS4s3TjIpD1IYjVF0xkVS/R6Rce4D5wA5oWxgRs+0UALbLJwIQPGkFAMZdm1F1xSRC520l5cp9tP65Li+TZpPzz4AlyzFdsZrel8cTlpMRHPmyTEYWOSnKBwcWt+wPPNN10aJFaGhoMGTIEDIyMnBxcWHdunUK10//rRv+tXHjRgC6dlUc8T59+nRmzpz5xtcr9ZWrMlZWVkgkEn777TdGjBhBQEAAP/zww1uPK1u2LKNHj8bDwwNtbW2aNWtGYmIifn5+SgdDFcb1tUfR1NGmzYLB6JTTI8rvMV79FiNNezntwLCSmUL3buSNII6OX0Xzb3vSdGp3kp7GcHTcKqL9HhfpvE2/6U6tni+ncgw8kfc72NtrIeFXXk5Qd+zTkqhzdxQWanh6+CraRmWpNalr3iISAeGc67+EtH/K6L82By8tLI6z/ZdSz6M/dgPb8CLmGTfcthH258sBFL5ztuE0rQcNFw1GUr4cL2KTeLTzHHeXHQBAz9IY6455LaNOJxconP/y5PUEeyofuBB05Co6RmVpMLEr+maGJASEc2TQElL+yVrmtazPw+I4PGgpLeb2x3FAG1JjnnHefRuPj7/Malbblv/tmy3fbvxtDxp/24MH+85zemreN9+T41bRZMbXtF85Bh3DMqSEx3NlqRd3tvylNOebHFl3AG0dbQbPH4F+uTI89gtiUX8PMl759zSvZKHQbWxkbsSi48vk2xY2lrTt34H7l++xoHfedDTdsnr0nj4AY4vypCancP34FfYu2UlOIVvor8q6cJa0cgbo9h6AunF5cp6G8Nx9OrK4GIC3zndVRt3YBMOVm+TbGhWs0OnUFemdWzyfObnI5/sv7j0MYuiE6fLt1Zt2sHrTDrq6tmXhnG/e++snHr6IplFZKk7qgZaZES8CQgnov1B+DVXy2vvXfEAH1LU0sZk/DJv5Lz+Xnl+6x4Mec/PKDHZFXVsLu/XfKhwbt/cMwVNWveefKM+HXrhfIpGwZMkSliwpeNxIUlLSG7eLQi0pKanUrp48ZswYEhMT2bt3b77n/vjjD+bNm0dUVBQ1a9Zk9uzZdO/enSNHjtCiRQsuXLhAly5dePz4sUKfvkwmY/ny5WzZsoXIyEjMzMzo3bs3bm5uBa7QZGhoyNatW/N9+wHY6Dju/fzwxcwiW9UJCi+x8LNlVO6y+sczqG1lLeUjskuicls3qzpCod2s/e3bC5UQNR4U3++1j2OfIpXffbfoPT6qVKor14+BqFyLn6hc3w9Rub4fn2rl2rtW7yKV33NvT7G99ofwSXYLC4IgCKpV2mc2i8pVEARB+ODEzdIFQRAEoZi962L8JZ2oXAVBEIQP7l3nrpZ0onIVBEEQPjjRchUEQRCEYiauuQqCIAhCMcsR3cKCIAiCULxEt7AgCIIgFDNRuQrv1cfyD1Bb8t9uVacKzhE3VR2h0HaWb6nqCIV201db1REKrdxHtOpR3TtLVR2h0IpzSX8xWlgQBEEQiplouQqCIAhCMROjhQVBEAShmIluYUEQBEEoZqJbWBAEQRCKmWi5CoIgCEIxEy1XQRAEQShmObml+46u6qoOIAiCIHx6cov437vKzMzku+++w9bWlgoVKtC7d28iIiIKffwvv/yCoaEh3333XaHKi8pVEARB+OBkublFeryrmTNncuTIETZt2sSff/5JSkoKX3/9NTk5OW899vr162zZsoWaNWsW+vVE5SoIgiB8cB+y5ZqcnMz27duZN28erVq1ok6dOqxfvx5/f3/OnTv31mNHjBjBqlWrMDQ0LPRrispVEARB+OA+ZMvVz88PqVRK69at5fusrKywt7fn6tWrbzx28uTJdO3aFRcXlyK9phjQVMLUHtCWuqM6oW9mSEJQBOc9dhB5LaDA8hUb1aDF3H6Ut6tIWmwSN9Yd5e6OM/LnKzS0p96ozpg52lDGwphTU9fzwOuCwjkaf9MDu84NKVvBmBxpDnH3nnB5qRdRN4KKnN+4fydMR/4PTTMjMgNDiZz/G+nX7ystW65DE4z7uaLrYIuaRIvMR2HErvYk5fQ1hXLqZXQx/2YABq5N0TAshzQqjpil20k+5lPkfK+b6zaV4cP6YWRkwLVrt5gwaTb37wcWWH7ggF78vmlZvv36ZW3JzMyUn3Ou2zcKz0dHx2JVyblQmaoNaov92M7omhmSHBjBrbnbib9a8HvAtEkN6nzfH4PqFXkRk8TDNUd5vO1v+fOa+jo4Tu9BRdcGSMqXI+neE265bSfxdrDCecrYWuA0uzdmzRxQ19Yk5VEkl8etISUoslC5AawGt8dmXBe0zQxJCwgnwG0rSVcfKi2rbWZIdY8BlHOsgp6tJVH7zuM/aW2+chpldKk282vMv2iEllFZMiITePTDbmIOXyl0LmXMBnXEckxXtM2MeBEYxtO5v5Ny7YHSskaujTAf2AG9WlVQl2jzIjCMiBX7STp1XV7GtG9bTHq2RM++EqipkX4vmLAlu0m9pvznfx98/e6yZdd+7gc8IjY+gQWzptKtc7sP9vpF8SFXaIqNjUVDQ4Py5csr7Dc1NSU2NrbA47Zu3UpwcDAbNmwo8muKlmsJYtelES7f9+f66sPs6jSHKN8gum79jrIVyistX87alK5bvyXKN4hdneZwffVhPvcYSDXXBvIy2vo6JASE4/39dqQvMpWe51lwFOfctrKj/Uz2dZ9HcmgcXbdNQ8+kXJHyG3RuToW5I4hd48mjzpNIu/kAm83fo1XBVGl5/Ua1SLt0hyfDPHj0xWRSzvpSed0s9Bo4vCykqUGV7fOR2FQgdPxPBLYZTfh3y8kKiylSNmW++3YsUyaPYtIUNxo37UxsXAIn/txNmTL6bzwuLS2ditZ1FB7/Vqz/ehjwSOH5OnXbFCqT9ZeNcZ4/gAcrDnOy/WwSrgfisnMaehWVvwf0rU1x2fEdCdcDOdl+Ng9WHqbugoFYdX75Hmjw8wgsWtbm6sR1nGw9g2jvu3zuORNdCyOF87Q57E5aaBznev7AiZbTufvjPrLTMgqVG8C8axPsFwwiZPkBrradQZJvIM67Z6JTQHZ1iRbSxBRCVh4i+abyL3JqmhrU2zcbvSoW3BnxKxebTcF/4hpehMYVOpcyxl82o/K8oUSu2M/d9t+Q4huA/c45aFc0UVq+XJOaJF+8S8CAhdxt/w1JZ25SfdM0yjb87GWZprVIPHyRB73c8f9iOi8eR1Jj11wkVSzfKWtRpKe/oJqtDTMmj0JHIvlgr/tfFEfLdcGCBRgaGr7xceHCBaXHvk1QUBDz5s1j48aNaGlpFfn4T77lOmbMGHbv3p1v//nz56ldu/YHzVJ3uCsPvC7gv/scAN7u27BpWRvHAW24tNgzX3nH/q1Ji0nC230bAM8eRWJRpxp1R3bi0fG8b9RPzt7mydnbALT7eZTS1w04cFFh+8L8ndTq0xITh8qEnr9b6Pwmw7vxbP/fPNtzCoCo7zdQ1qUexv1ciVmyLV/5qHm/KWzHrthD2dYNKNe+sby1a9SzLZrGBgT3mkGuNBsAaUTB3zSLYuKE4fy0ZDUHDvwJwJChk4mKuE2f3l/x28YdBR6Xm5tLTMybP9yzs7PfWkYZ+1GuhHheIHjnWQBuztmGRSsnqg5qy90f9uYrX3VgG15EJ3FzTt7vNyUokvLOVbEf3ZnwY9fR0NHCqnMDLg5fTtzlvFaZ/89/UKF9XaoOasu9xfsAcJzRixjvu/h57JSfO62IFVjl0Z2J3OtNxD89JwGzNmPSygmrwe15tDD/31hGWBwBs7cAYN6lkdJzVujTEq3y5bj+pTu50hz5ce/KcmQX4j3PErfrNABP52zEsGUdzAd2IGzRznzln879XWE74hdPDNvUw6hjI3lr9/H4XxXKPJmxHqOODTFs5UxMSNQ7Zy4Ml6YNcWnaEIDZC3/5IK/5XxVHy3XMmDH06tXrjWWsrKy4fv06OTk5JCQkYGLy8gtUXFwcTZo0UXrctWvXSEhIoHHjxvJ9OTk5XLp0id9//53IyEgkb/gC88lXrgAtW7Zk/fr1Cvte7z54G5lMRm5uLhoaGv8pg7qWBmaOVbix4U+F/U/P38Wynp3SYyzr2vH0tcrv6fk7fNajOeqaGsiy3z4KTlmOWn1bkfk8nfj7Twt9nJqWJrq1qhH32wGF/ak+t9Cr91kBRyl5fX1dcpJT5dsG7RqTduMBlt+Poly7RuQkpZB8zIfY1Z7wH36+f1WpUglLS3P++stbvi8jI4MLF67SpEn9N1auuro6PA66ioaGBrdv++Pu8RN+fv4KZWyrVCb0yQ0yM7O4dv0Wc9x+JCQk9I2Z1LU0MKpdhYdrjynsj/a+i0l95e+B8vXtiPZWfA9EnbuDTa8WqGlqoKahkfdeyMxSKJOTkYVpw+p5G2pqVGjvzINVR3DZNQ2j2lVID4vj4do/CStk16ualgZla9vyZM1Rhf0J5+5gWL96oc6hjFnHBiRdC6DGD0Mx7Vgf6bNUYg5fJuTXA+T+x39/NS1N9GtXJWrdIYX9yedvU6Z+jUKfR6OMLtmvvFfzvY62JuoSbbKTCi7zKcsthnmu5cuXL9RndZ06ddDS0uLs2bP07NkTgIiICAICAmjUSPkXu86dO+PsrHgpZ9y4cVStWpWpU6eirf3mWzCKbmFAIpFgbm6u8Fi3bh1NmzalQoUKfPbZZ0yYMIGkpCT5MTt37qRixYqcOnWKJk2aYGpqSkBAAFlZWbi7u+Pg4IClpSWtWrXi77//LvjF/6FrXBZ1TQ3S4xTvm5oen4y+qaHSY/RMDUiPf618XDIaWproGJct0u+gSps6jHmwkfFBm3Ee3pED/X4kPf55oY/XMCqHmqYG2fFJCvuz45LQKiD/64wHdELLojxJB87K92lVssCgUzPUNDV4MtSDmF92YtzPFYtpgwqdTRkLczMAYmIVW0ExsXFYmCvvxgYIDHzM8JHf8L8eQ+k/YCwZmZmcP3eIatWqyMtcu3aLocOn0LlLf0aPmYaFuSkXvA9hbGxU4HkBtP95D2S+9nvPiEtGx9RA6TG6pgZkvPaeyYx/jrqWJhLjsmSnZRB/PRCHyd3QtTBCTV2Nyt2bUb6eHTpmhgDomJRDq4wuDhO/JNr7Lt5f/8jTg5dpvHoslm3qvDHzy+zlUNfUIOu1LFlxyWj/8zr/hW5lM8y7NEZNS4Nb/X7k8eK9WA1qR7XZff7zOTWNy6KmqYH0tazSuCS0CpnVfHBHtC3LE+/lXWAZq+l9kaVlKFyXFV6SkVukx7swMDBgwIABuLu7c+7cOW7fvs2oUaOoWbMmLVu2lJdr0KCB/PqqoaEhDg4OCg89PT2MjIxwcHBATU3tja8pWq4FUFdXZ9GiRdjY2BAWFsa0adOYNm2awoXtjIwMlixZwrJlyzAxMcHc3Jxx48YREhLCb7/9Jq98e/fuzZkzZ3B0dFThT/RmYZcesKvjbHSNy1CrTys6rZnA3q88SI9N+iCvX65jUyxnDiV0wmKkES8rPDV1NbLjk4mYuQpkMjLuPUbDqCwV5gwn+off33BGRX36fMXa1Yvl2192Hfifcl65eoMrV2/Ity9d9uWG7ynGjR3ClKlzAThx8my+Y4ICLjNwQE9+XV70gRHv6sqEtTRcNpIvb61Clp3Ds7tPCD14CePa/3whUM/7kIg4cZPA9ccBSPJ/inFtW+yGtifqb78PnllOXY2s+Ofcn7oeZLmk3AlBy7gs9vMGEuRRcO/C+2TUqTHWboN4NPpnsiKUd1GbD+uMef/2PPj6e3JSX3zghB+HD71C06JFi9DQ0GDIkCFkZGTg4uLCunXrFHobg4KCSEhIKJbXE5UrcPr0aSpWrCjfbtKkCV5eXvLtypUrM2/ePPr27cu6detQV89r8Ofk5LBkyRLq1KkDQEhICF5eXty5cwdra2sARo4cyblz59iyZQs///xzgRleJKYgy85B77UWip6JAWlxSUqPSY9LRs/ktfKmBuRIs8lITCn0zw+Q/SKT5KcxJD+NIfrWYwZ5L6VW75ZcW3GwUMfnPHtObnYOmiaGCvs1TQ2RFpD/X+Vcm2L981TCvvmFlL8Vv+VLY5+BNBtkL/8QMx+Foa6ng4ZxOXISC9e6PnLkFNeu3ZJvSyR5XTrmZqaEhb0cDWtuZkp0Ea6VymQybty4g90rLdfXpaWlc/9+oELrVpmsf94DktcGkukoaZ3+64WSVq3EpBwyaTaZ/7wH0p7GcvZ/C9DQlaBVVpeM2CSarJtA6tPYl68rzeZ5kOJqNc8fRVCpq/LrUfmzP0eWnYP2a1m0TQ3IeocvaFkxSXmXN2QvWy5pgRFo6OmgVb4s0oSivc8BshNTyM3OQeu1rFqmhkjfktW4cxNsV0wkeOIKkv7yVVrGYvgXWE3rw8P+80nze1TkfJ+KD71wv0QiYcmSJSxZsqTAMq/2Tipz7NixNz7/KtEtDDRt2pQLFy7IHytWrMDb25tu3brh4OCAlZUVAwYMICsri5iYl6NUNTU1FVqjt2/fJjc3l8aNG1OxYkX549SpU4SEhLwxg0yaQ+zdECq1qKWwv1KLWgVOiYm6GaS0fOydkP90vVWBuhoa2oX/7pUrzebFvUeUbV5HYX+Z5nVIv6F8egPkjTC2/mUq4d/9yvPjl/I9n+57H20bS3ilC0ZSpSKy9IxCV6wAqalpPH78RP64fz+QqKgY2rZ9OXdNIpHQvHlDLl9W/qFZEEfHz4iKLniQlUQiwd6+KtHRbx7hLJPm8OxOCBafK/ZwWLjUIt5X+XsgwTcICxfF94DF544k3g7Jd00y50UmGbFJaBnoYdHSkYiTN+Svm+gXTNmqiqNay9pakhYe/8bM/8qV5pByJ5jyr2U3/tyRJN+Cpza9TdL1APRszBX+/fWqWpKTnvGfKta8rNmk3XmMgYuTwv5yLZxI9S142oxxl6ZUXTGR4MkrSTx2WWkZi5FdsJrWh4ABCz/oFJyP0YdeoelDEy1XQE9PD1tbW/l2aGgoX3/9NQMHDmTWrFkYGxtz+/Zthg0bRlbWy4EhEolEoUtBJpOhpqbGmTNn8g3d1tHReWuOmxuP02HZGGL8gon0DcSxfxv0zY24uyPvmm37ZXmjfU9NyRt8dXfHGZwGtcPFvT93d56hQv3qOPRw4cSE1fJzaulJMLAxB/K6WMtWLI+JQyUyk9JIiUxAu4wu9UZ3Jvj0LdJjk9AtX5baA9tRxsKYoKNvnlz9uviNB7H6ZSrpt4NI972PcT9XNM2MSdyV19Vo9fMUAMK/yZsnavBFC6x/mUrUD7+TdvWevNWbK82WD2pK3Hmc8gO/wNJ9BAnbjqFtZYb55L4k7Pgzf4AiWrFyIzOmT+BhwCOCgoKZNXMSqalp7N7zclDWqRN7ue57i9lzfgTAbc4Url69SdCjEMqVK8v4cUOp7fgZ48fPlB/z049uHD32F6FhEZiZmjB71mT09fXYtn3fWzMFrD9Oo5VjSLz1mLjrgVQb2AYdCyP5vNVGK0YDcHXiOgAeb/sbu6HtcJ7Xn0fbz2DaoDo2vVy4MnaV/JwWLR1BXZ2UoEjKVDHHya0vKY+iCNlzXl7m4ZqjNFk/kbirD4n1uY9ZMwcqdW2Mz5D8c3oL8nTdMWqtGs/zW49JuhaA1aC2SCyMCd/6FwA1V44DwP+V92eZmpUB0CyjB7JcytSsnFf5Bea1osO2/IX10A7YLxxM2KYT6FqbUfW7noRtPlXoXMpEbThC1RUTSfV7RMq1B5gP7IC2hREx2/LOa7t8IgDBk1YAYNy1GVVXTCJ03lZSrtyXjyOQSbPJ+WfAkuWYrlhN78vjCcvJCI58WSYji5yU9HfKW1jp6S8IDc/ricmV5RIVE8vDwMcYlCuLpYXZB8lQWB9ynqsqiMpViVu3bpGVlSXvowc4ceLEW4+rXbv2P9M0Yoq8mgdA0JGr6BqWpeGEruiZGZIQGM6hQUtIici7BlC2guIcvOdhcRwatBSXuf1x7N+GtJhneH+/TT4NB8Csti09PGfLt5t804Mm3/Tg/r7z/PXNBmTZORhXt8Lh68/RMSxDRlIqMbeD8eq5gPiHYUXKn3zMBw2jcpiN74WmqTGZgU95MtRDfg319fmuxv1cUdPSpIL7SCq4j5TvT71yl5A+swCQRsUTMnAulnOGYXdsOdlxSSTuO03cqvzTUopqydI16OrqsHL5QvkiEq6d+5KamiYvY2tbmbDwl93GhgYGrF3zExYWpiQnp+Dnd49Wrbtz3ddPXqailSU7tq/GxMSYuLgErl67SbMWXQgNffsi4WGHryAxKoPD5G7omBmSHBDOhf5LSP+nBfn6fNe0sDjO91+Cs0d/qg5sy4uYZ9xy20b4sZfvAa2yetSe9TW6lsZkJaUSfuw6d3/0VGjZRpy4ge93m3CY+CXO8waSGhLN1YnrinS9NebQZbSMylJl8ldIzI1IfRjGrb4/kvFPdmXzXZuc+Ulh27RDfV6ExuLTYAIAmZEJ3Pz6B6p7DKDx3z+RFZdE5O6zBC/7o9C5lEk8fBFNo7JUnNQDLTMjXgSEEtB/ofwaquS1+a7mAzqgrqWJzfxh2MwfJt///NI9HvTIu9ZuPtgVdW0t7NZ/q3Bs3N4zBE9ZxYdw72EQQydMl2+v3rSD1Zt20NW1LQvnfPOGIz+80n4/V7WkpKTS/RO+xZgxY0hMTGTv3pcf1vfu3aN58+bMnz+fLl264Ovry/fff094eDi3b9+mcuXK7Ny5k2nTpuW7q8LIkSO5dOkSCxcuxMnJiWfPnuHj40PlypX58ssv873+Fsdx7/1nLA6tNZRf8yuJnCNuqjpCoe0s31LVEQrNWJat6giFVk5DquoIhVb3zlJVRyi0dK2iTVF8k2qVGhap/KPQa28vVIKIa65K1KpVix9//JE1a9bQuHFjtm3bxvz58wt17OrVq+nXrx9z586lQYMGfP3111y8eJFKlSq959SCIAgfj9zc3CI9PjaffMtV1UTLtfiJluv7IVqu78en2nKtYlW/SOVDwos20FDVxDVXQRAE4YP7GFujRSEqV0EQBOGDe9dVl0o6UbkKgiAIH5xouQqCIAhCMfvQyx9+aKJyFQRBED64j3HVpaIQlasgCILwwYluYUEQBEEoZmL5Q0EQBEEoZqLlKgiCIAjFrLRXrmKFJkEQBEEoZmJtYUEQBEEoZqJyFQRBEIRiJipXQRAEQShmonIVBEEQhGImKldBEARBKGaichUEQRCEYibmuQrv3e7duwtdtk+fPu8xSel269YtQkJC6NChA/r6+qSlpSGRSNDULHl/5tHR0WzatImAgAAAqlevzrBhw7C0tFRxMkEoHmKe60fsiy++QE1NrVBljxw58p7TFMzKykphOysrC6lUirp6XseJTCZDS0sLiURCWFiYKiIq5ePjg46ODvXr1wdg586dbN++nRo1arBgwQLKlCmj4oR5YmNj6du3Lzdu3EBNTY2bN29iY2PD5MmTkUgkLF68WNURFZw9e5a+fftSsWJF6tWrB8DNmzcJDw9n586dtG7dWsUJFaWnp3P37l3i4uKQyRTv5PLll1+qKJVy/v7+bNmyhZCQEFatWoWFhQVHjx7F2toaJycnVcf7pJS8r7RCoX322Wfy/5fJZOzbtw8zMzOFD6yYmBh69eqlqogAhIeHy///5MmT/PjjjyxatEheafn6+jJ79my+++47VUVUaubMmcyYMQOAoKAgpkyZwoABA7h8+TJz587ll19+UXHCPLNmzcLU1JSQkBBq1aol39+tWzemTZumwmTKTZ8+nQEDBrB48WKFL4fTp09nxowZXLt2TYXpFJ07d45hw4aRmJiY7zk1NTWl+1XlzJkz9OnTh7Zt23L+/HkyMjIACAkJYdeuXezatUvFCT8touVaSsycOZOcnJx8H1gzZswgNze3xLReGjZsyKpVq2jYsKHC/mvXrjF27Fh8fX1VlCw/KysrfHx8sLGx4eeff+batWvs3bsXX19fBg4cyP3791UdEQA7OzsOHTqEg4ODQuYnT57QtGlTIiMjVR1RgYWFBT4+PlSrVk1h/6NHj2jRogVRUVEqSpZf48aNcXZ2Zu7cuSW+y7pNmzb06dOH4cOHK7wP/Pz86N27Nw8fPlR1xE+KGNBUSuzZs4eRI0fm6yYePnw4e/fuVVGq/EJDQ9HT08u3X1dXV6GFWxKoq6uTk5MDgLe3N23atAHAzMysRLVYMjIy0NbWzrc/ISEBiUSigkRv5uzsjL+/f779/v7+1K5dWwWJChYaGsq0adNKfMUK8ODBA9q1a5dvv6GhIc+ePVNBok+bqFxLidzc3AI/sEqSevXqMX36dIXWVGRkJLNmzZJ3E5cUzs7O/PTTT+zZs4fLly/LP7hCQ0MxNzdXcbqXmjZtmq/LLycnh19//ZXPP/9cRakKNmzYMGbPns2yZcu4cOECFy5cYNmyZcyePZsRI0bg5+cnf6hao0aNCAoKUnWMQjEyMlLa6r99+zYVKlRQQaJPm7jmWkr079+fiRMnEhwcrHAtc/ny5fTr10/F6V5atWoV/fr1o3bt2vLWQFRUFHZ2duzcuVPF6RQtWrSI4cOHc/z4cb755huqVKkCwKFDh/J1a6uSh4cHnTt35ubNm2RmZjJnzhwePnzI8+fPOXnypKrj5TNixAgA5s2bV+BzoLprmq9W6kOGDMHNzY3o6GgcHBzyjbyuU6fOhw33Bj169GDu3Lls3rwZNTU1srOz8fHxwc3NrUR9BnwqxDXXUkImk7Fy5UrWrVtHdHQ0kHdta/To0YwfPx4NDQ0VJ3wpNzeXs2fPEhgYCIC9vT0tW7Ys9MhnVcvIyEBDQwMtLS1VR5GLiYlh06ZN3L59G5lMhpOTE8OHD8fCwkLV0fIJDQ0tdNlKlSq9xyTKGRkZoaam9tZbopW0AU1SqZSxY8eyf/9+cnNzUVdXJzc3lx49erB27doS9RnwKRCVayn0/PlzAMqVK6fiJB+3f6dd/DtlKCYmhpMnT2Jvb0+jRo1UGU14j0p65a+MTCYjMDAQKysr4uPj5V+yateuTdWqVVUd75MkKlfhg9u4cSMbN27k6dOnXL58GRsbG5YtW4aNjQ1fffWVquPJ9ejRgzZt2jBmzBhSU1Np2LAhaWlppKWlsXLlyhKz4MXFixeV7ldTU0NHR4cqVapgZGT0gVPlFx4eTkpKisIUsvPnz7NkyRLS0tLo0qULU6ZMUWHCj1dubi5mZmZcvXoVW1tbVccRENdcP3q9e/cuVLk9e/a85ySFs2bNGlasWMGkSZPw8PCQ77e0tGTDhg0lqnK9deuWPOORI0coW7Yst2/fxtPTs0RVrq8uJvJvV+ar2+rq6ri6urJ+/Xr09fVVlnP27NlUqVKF77//HoCwsDD69OlDpUqVsLGx4YcffkBPT49Ro0apLOPr5s+fT8WKFRk6dKjC/t9//53IyEjmzJmjomSK1NTUsLOzIz4+XlSuJYQYLfyRMzY2LtSjpNi8eTPLly9nzJgxCoNDnJycStw8vLS0NAwMDIC8VYW++OILtLS0cHFx4cmTJ6oN9wpPT0/s7e3ZsGEDt27d4tatW2zYsIEaNWqwbds2tm3bxt27d+WVmqrcuHGD9u3by7f37duHubk5Fy5cYPfu3cydO7fEDWrbu3ev0ulBderUKTFfWP/l4eGBm5sbd+7ceev1YuH9Ey3Xj9yaNWuAvCXaJBJJiR+0EBYWptAt+C8tLS35ijIlhZWVFVevXsXIyIi///6bLVu2APDs2TN0dXVVG+4VCxYs4Mcff1SYdmNjY4OJiQnu7u54e3ujoaHBtGnTWLJkicpyxsfHY21tLd/28fGhc+fO8i9Zrq6uLF26VFXxlIqLi8PExCTffmNjY+Li4lSQqGBDhgwhIyODli1boqmpmW+Oc0laWvRTICrXUiAnJ4dKlSrh4+NDjRo1VB3njWxsbLh9+3a+gSCnTp3C3t5eRamUGzduHKNGjUJfXx9ra2uaNWsGwKVLl3BwcFBxupcCAgKULnJgaWkpXxjfwcGB2NjYDx1NgYGBAYmJifIK9ubNmwwaNEj+vJqamnzRjpLCysqKS5cuYWNjo7D/4sWLJW7u6E8//aTqCMIrROVaCmhoaGBtbU1WVpaqo7zV+PHjmTZtGi9evCA3N5dr166xZ88eVqxYwapVq1QdT8GQIUNwdnYmLCyMVq1ayUcNV6lShdmzZ6s43Uv29vYsXbqUlStXylsrmZmZ/Pzzz/IvLBEREZiZmakyJvXq1WPNmjWsXr2agwcPkp6ertDafvToERUrVlRhwvwGDx7MrFmzkEqluLi4AHmrdXl4eDB58mTVhntN3759VR1BeIUYLVxK7Nq1i/3797NhwwbKly+v6jhvtHXrVpYsWUJERASQ18KaMWMGAwcOVHGyj5Ovry+9e/dGJpPJu9wfPHiAuro6e/fupV69euzevZu4uDgmTpyospz37t2ja9euJCcnI5PJmDp1qsKAoJEjR1K2bFl+/vlnlWVUxsPDg7Vr18q/vGprazN69GiVX8N+k5iYmHxftl/tkhfeP1G5lhJNmzbl6dOnSKVSKlSokG/93kuXLqkoWcESEhKQyWSYmpqqOkqBkpKS+OuvvwgPD8/3YTV9+nQVpcovLS0NT09P+VJ91atXp0ePHvj6+tKyZUvVhntFQkICV65cwdzcPN9yl//OIX69C1ZVsrOzOXPmDPXr10cikSjce7ak3G7wVcnJyUyfPp2DBw8q7cUqSQtefApE5VpK/Pjjj298/t9bp6najBkz6N27d4laNq4g169fp1evXkgkEuLj47G0tCQmJgaJRIK1tXWJ/MICeWs179y5k507dxIaGio+VN+Bubk5165do3LlyqqO8lYTJ07k5s2beHh4MGDAAFatWkVkZCTr1q1j4cKFdO3aVdURPynimmspUVIqz7e5efMm69evx87Ojl69etGzZ88S+8E1d+5cevbsyeLFi7G2tubIkSPo6ekxbNgwBgwYoOp4CnJycjh27Bg7duzgzJkz1KxZkyFDhpTYD9SjR4+yevVqeWvQ3t6esWPH0qVLFxUnU1SrVi1CQkJK7Hv0VadPn2bjxo00bdoUDQ0N6tSpw//+9z8sLCzYvHlziX0vlFZinmspkpGRwaFDh/j1119JSkoC8m6UXJJuN3Xq1Clu3bpFz5492bdvH87OznTs2JHff/9dnrmk8Pf3l9/GT11dnczMTMzMzPDw8HhrT8GHEhQUhJubGzVq1MDNzY3atWuTm5vL+vXrmTRpUonpYn3VypUrGTp0KHZ2dnh4eODh4YGdnR0jRoxg5cqVqo6nYMaMGcyePZujR48SHh7Os2fPFB4lSXJysvy6arly5eQ9Fg0aNChRN6D/VIiWaykRHBxM165dSUtLIzk5mW7dumFoaMimTZtITk4uUR9aNjY2fPfdd3z33Xf4+fnh5eXF0qVLmTVrlvymAyXBqwvzm5mZERYWhr29Pfr6+iUip6urK/fv3+fLL79k8+bNNG/eHIBff/1VtcHeYtWqVSxZskRhGs6AAQOoV68eP/zwAxMmTFBhOkW9evUC8vK9emOJ3NzcErdwv42NDU+ePMHa2prq1auzf/9+6tWrx5EjR0rE8pefGlG5lhIzZ86kdevW/PLLLwpdWK6urowbN06Fyd4sOzubzMxMsrKyStwCGE5OTty8eZNq1arRvHlzFixYQGxsLJ6entSsWVPV8bh27RrDhw9n8ODBShfmKKnS0tJo0aJFvv0tWrQgLS1NBYkKduTIEVVHeKt79+7x2Wef0bdvX/z9/WnRogWTJ0+md+/e/Pbbb8hkshLT0/IpEZVrKXH16lVOnz6dr4KysrIqEa2sVz169AhPT0+8vLwICwujRYsWLFiwoMRdb3NzcyMlJQWAOXPmMHr0aKZPn07VqlVZvXq1itPBmTNn2L59Ox07dqRSpUr07t2bHj16qDrWW3Xq1IlDhw7lW6T/8OHDuLq6qiiVcv/2BpRkLi4uBAQEyL9E9+rVixUrVnDt2jVu3bpF1apVS8SXwU+NqFxLEalUmm9feHh4ibr1XMuWLblz5w6Ojo4MGzaMHj16YG5urupYSjk7O8v/38TEBC8vLxWmyc/JyQknJycWLFjAwYMH2bFjB+7u7shkMk6dOoWFhQWGhoaqjgmgsECIra0ty5Yt48KFCzRo0ADIm6t7/fr1EtvLEhUVpXQ61r+rdqnS6+sIX7p0iYyMDGxsbMTcVhUSU3FKiaFDh6Knp8eqVauwsrLCx8cHY2Nj+vbti42NTYlZ/Wj+/Pn06tWrxC11WFoEBwezbds29uzZQ2JiIi4uLiXiS4Gyxe+VUVNT4/bt2+85TeFFRUUxfPhwLl26JL+B+qvXXkvCNVcjIyMCAwPl88X//fsviYPZPiWici0loqKi5N2qT548oXbt2gQHB2NmZsaff/6pdPFxIb+mTZsWumxJnecKeVNzTpw4wY4dO9i9e7eq43y0Bg8eTGJiIkuXLqV169Z4eXkRGxvLokWL+OGHH2jVqpWqI2JsbExgYKD8b1xUriWDqFxLkRcvXuDl5cWdO3eQyWQ4OTnRs2dPld/BZdq0abi7u6Ovr8+0adPeWFbVi48XZeDHxzK3WPjv7Ozs8PT0xNnZGWtra86ePUu1atU4efIkS5Ys4fTp06qOiJGREa1atUJbWxvIm+/arFmzfH/3Je0WeaWduOZaiujq6pa4xQ0A7t+/L78efP/+/QLLvdrdpiqiwnw/PqYvWK/KyMiQ3w/Z0NCQuLg4qlWrhr29Pf7+/ipOl6dPnz4K2/9OHxJUS1SupURBXX9qamro6OhQpUoVnJycPnCqPEePHlX6/yXdgwcPyMnJoVatWgr77927h6amZom/vV9J8jF9wXqVnZ0dQUFBVK5cGUdHRzZv3kzFihXZuHGj0tv8qcK/93QWShbRLVxKWFlZkZWVhVQqld8aTSaTyRdCkEql1K5dm/3796v0+uvRo0fp2LGj/AbZJVmHDh0YPnw4PXv2VNi/f/9+fvvtN06cOKGiZKVLdnY2GRkZJXIxfE9PT6RSKf369cPPz48ePXqQmJiIRCJh7dq1dOvWTdURhRJKLH9YSmzevJnatWtz8uRJYmJiiImJ4eTJk9SpU4cdO3Zw/vx5cnNzmTVrlkpzjhgxAjs7O6ZMmcKVK1dUmuVt/P39qVevXr79devWfWPrS1DO29ubAwcOKOxbtmwZFStWpHLlynTv3r3ELIGZnp7Ot99+i7u7O+7u7gwfPhxra2vu3LnDmTNnuHfvnqhYhTcSlWspMXv2bH788UcaNmyIpqYmmpqaNGzYkIULFzJnzhwcHR1ZsGABPj4+Ks0ZGBjI/PnzCQkJoXPnzvJ5moGBgSrNpYy6ujrPnz/Ptz8pKSnf3ELh7ZYtWya/hy/AjRs3mDdvHl9//TUeHh7cu3evxNzLddGiRezatYv27dvTvXt3zp49y9SpU9HT06NOnTol/p7JguqJbuFSwsLCgr///jvfSiz37t2jbdu2REdH8/TpU5o0aUJkZKSKUiqKiopi//798hHOTk5OnD17VtWx5Pr06YOGhgZbt26Vr3yVnZ3NoEGDyM7OZu/evSpO+HGpXr06np6e8tsNurm5cf36dXn3+sGDB1mwYAG+vr4qTJmnTp06uLm50b17dyDvi0CHDh2IiYkpcct0CiVTyb/wJRRK3bp1mT17NuvXr5eveBQTE4Obm5u8azM4OJgKFSqoMqYCS0tLRo4cibW1NUuXLi1RiwcAeHh44OrqirOzM40bNwbgypUrpKWl8eeff6o43ccnOTlZ4Xr/1atXadeunXzb2dmZqKgoVUTLJyIigiZNmsi369Wrh6amJlFRUVhZWakwmfCxEN3CpcTKlSuJjo6mVq1aODo64ujoSK1atYiOjpbfESctLY1vv/1WxUnznD9/ngkTJmBnZ8fEiRNxcnLi4MGDqo6loHr16ly8eJFevXqRlJREUlISvXr1wsfHR6ww9R+Ym5sTEhICQGZmJnfu3KFhw4by51NTU+VzNVUtJycnXxZNTU2ys7NVlEj42IiWaylRtWpVLl++zJkzZwgKCgLyKodWrVrJpzd88cUXqowI5C2Af+DAAeLi4mjTpg3Lly/H1dUViUSi6mhy6enpzJ07l2PHjiGVSvn8889Zu3atuM72jtq1aycfIHT8+HH09PQUWof+/v7Y2tqqMOFLubm5jBw5UqGCzcjIYNKkSQqLM4iFGYSCiGuuwgfVoUMHevXqxf/+978Se49JNzc3Nm3aRM+ePZFIJOzfv5/mzZuzdetWVUf7qCUkJNC/f3+uXLlCmTJlWLNmjcKdkL788ksaNmzInDlzVJgyz9ixYwtVTswxFQoiKtdSxNfXF29vb+Li4pDJZArPlYRVb6RSKSNHjmTu3LlUqVJF1XEKJAazvF/JycmUKVMm3+/y2bNn6Ovrl5iuYUF4F6JyLSVWrlzJ3LlzsbW1xcLCQmGlGzU1tRJz0+fKlSvj7e1dohcVNzU15fbt2wqDvywsLPD19RWDWQRBKBRxzbWUWLduHYsXL2bkyJGqjvJGXbp04ciRI0yYMEHVUQokBrMIgvCuROVaSqSkpNC+fXtVx3grKysrlixZwqVLl3B2dkZPT0/h+fHjx6so2UtiMIsgCO9KdAuXElOmTKFmzZoMHz5c1VHe6E03zS4pN8oWg1kEQXhXonItJZYuXcratWtp3bo1NWvWzLcwfkloEQqCIHwqROVaSnwMLUJBEIRPhahchQ/qY7pRtiAIwn8lBjSVQrGxsZiYmMjv61qSvH6rtuzsbAIDA8nJyXlj61sQBOFjIirXUkIqlTJ//nx+//13Xrx4wY0bN7CxscHd3R1ra+sSM9Dp6NGj+fZlZGQwYcIEhaXwBEEQPmYlr2kj/CeLFy/mxIkTrF+/XmGd3rp167Jr1y4VJns7HR0dpk6dWmLu5SkIgvCuRMu1lPDy8mLVqlU0b95coTvYwcGBR48eqTBZ4SQkJJCamqrqGIIgCMVCVK6lRHR0NNbW1vn2Z2dnk5OTo4JEyq1atUphOzc3l5iYGPbt2/dRLIIhCIJQGKJyLSVq1KjBpUuXqFy5ssL+AwcO4OTkpKJU+W3YsEFhW11dHRMTE/r168eUKVNUlEoQBKF4icq1lJg+fTqjRo0iIiKCnJwcDh48SGBgIF5eXnh6eqo6ntydO3cUtqVSKZmZmZQpU0ZFiQRBEIqfGNBUSri6urJ582bOnDmDuro6ixcvJjg4mD179tCyZUtVx8Pb25sDBw4o7Fu2bBlWVlZUrlyZ7t27k5SUpJpwgiAIxUwsIiF8EN26daNt27byZRhv3LhB27ZtGTBgANWrV2flypX06tWL+fPnqzipIAjCuxMt11IiPj6e+Ph4+ba/vz8LFizAy8tLhaleun//Ps2bN5dvHzx4kEaNGrFixQrGjx/P4sWLOX78uAoTCoIgFB9RuZYSgwcPlldOCQkJdOrUiaNHjzJ16lRWrlyp4nSQnJyMiYmJfPvq1au0adNGvu3s7ExUVJQqogmCIBQ7UbmWEv7+/jRo0ACAQ4cOYWtry5UrV1i7di1btmxRbTjA3NyckJAQADIzM7lz5w4NGzaUP5+amprvBuWCIAgfK1G5lhIZGRno6+sDcO7cOVxdXQFwcnIiIiJCldEAaNeuHe7u7nh7e+Pu7o6enp7Ccof+/v7Y2tqqMKEgCELxEZVrKWFra8uRI0cIDw/n7NmztG7dGoC4uDgMDAxUnA5mzZqFRCKhW7du7Ny5k+XLlyu0VHfs2EGrVq1UmFAQBKH4iNHCpcThw4cZPnw42dnZfP755/JpL0uXLuXq1avs27dPxQnzJCcnU6ZMGTQ0NBT2P3v2DH19fdE1LAhCqSAq11IkNjaWqKgoHB0d5esL+/r6Uq5cOapXr67idIIgCJ8OUbmWYsHBwVSoUAEdHR1VRxEEQfikiGuupcS8efPkt5bLzc2lW7du1KtXD3t7e3x9fVWcThAE4dMiKtdSwtPTEzs7OwD++usv7t69y+nTp+nduzfff/+9asMJgiB8YsTC/aVEXFwcFSpUAPIq16+++op69ephZGRUItYWFgRB+JSIlmspYWxsTFhYGABnzpzBxcUFyLufqyAIgvBhiZZrKdGlSxeGDx9OtWrVePbsmXxpwbt371KlShUVpxMEQfi0iMq1lPjhhx+wtrYmPDwcDw8P+WpN0dHRDBs2TMXpBEEQPi1iKo4gCIIgFDPRci1loqKiCA8PJysrS2F/s2bNVJRIEATh0yMq11IiKiqKYcOGcfnyZdTU1MjNzUVNTU3+fGJiogrTCYIgfFrEaOFSYubMmWhqanL16lX09PQ4fvw4W7Zswd7env3796s6niAIwidFtFxLiYsXL+Lp6Un16tVRU1PDxMSExo0bI5FIWLhwobjjjCAIwgckWq6lREZGBsbGxgAYGhoSFxcHgL29Pf7+/qqMJgiC8MkRlWspYWdnR1BQEACOjo5s3ryZ0NBQNm7ciKWlpYrTCYIgfFpEt3ApMXr0aGJiYgCYNm0aPXr0wMvLC4lEwtq1a1WcThAE4dMi5rl+5NLT05k7dy7Hjh1DKpXSsmVLFi9ejK6uLoGBgVhbW1O+fHlVxxQEQfikiMr1I+fm5samTZvo2bMnOjo6eHl50bx5c7Zu3arqaIIgCJ8sUbl+5OrUqYObmxvdu3cH4MaNG3To0IGYmBg0NDRUnE4QBOHTJAY0feQiIiJo0qSJfLtevXpoamoSFRWlwlSCIAifNlG5fuRycnLQ1tZW2KepqSluNScIgqBCYrTwRy43N5eRI0cqVLAZGRlMmjQJXV1d+b49e/aoIp4gCMInSVSuH7k+ffrk29erVy8VJBEEQRD+JQY0CYIgCEIxE9dcBUEQBKGYicpVEARBEIqZqFwFQRAEoZiJylUQBEEQipmoXAVBEAShmP0fBFyMm/dxuIwAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 2 Axes>"
+      ]
      },
-     "metadata": {}
+     "metadata": {},
+     "output_type": "display_data"
     }
    ],
    "source": [
@@ -190,7 +337,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 28,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -200,17 +347,18 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 29,
    "metadata": {},
    "outputs": [
     {
-     "output_type": "display_data",
      "data": {
-      "text/plain": "&lt;Figure size 432x288 with 1 Axes&gt;",
-      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"286.047825pt\" version=\"1.1\" viewBox=\"0 0 420.4625 286.047825\" width=\"420.4625pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2020-11-01T23:23:49.275508</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 286.047825 \nL 420.4625 286.047825 \nL 420.4625 0 \nL 0 0 \nz\n\" style=\"fill:#f0f0f0;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 37.4225 261.79845 \nL 413.2625 261.79845 \nL 413.2625 28.51845 \nL 37.4225 28.51845 \nz\n\" style=\"fill:#f0f0f0;\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 52.780517 261.79845 \nL 52.780517 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_2\"/>\n     <g id=\"text_1\">\n      <!-- 1.0 -->\n      <g transform=\"translate(41.648329 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n        <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_3\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 139.061508 261.79845 \nL 139.061508 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_4\"/>\n     <g id=\"text_2\">\n      <!-- 1.5 -->\n      <g transform=\"translate(127.929321 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_5\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 225.3425 261.79845 \nL 225.3425 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_6\"/>\n     <g id=\"text_3\">\n      <!-- 2.0 -->\n      <g transform=\"translate(214.210312 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_7\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 311.623492 261.79845 \nL 311.623492 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_8\"/>\n     <g id=\"text_4\">\n      <!-- 2.5 -->\n      <g transform=\"translate(300.491304 275.936262)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-53\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_9\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 397.904483 261.79845 \nL 397.904483 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_10\"/>\n     <g id=\"text_5\">\n      <!-- 3.0 -->\n      <g transform=\"translate(386.772296 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n       <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_11\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 261.79845 \nL 413.2625 261.79845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_12\"/>\n     <g id=\"text_6\">\n      <!-- 0 -->\n      <g transform=\"translate(25.015 267.117356)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_13\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 231.936699 \nL 413.2625 231.936699 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_14\"/>\n     <g id=\"text_7\">\n      <!-- 50 -->\n      <g transform=\"translate(16.1075 237.255605)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_15\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 202.074948 \nL 413.2625 202.074948 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_16\"/>\n     <g id=\"text_8\">\n      <!-- 100 -->\n      <g transform=\"translate(7.2 207.393854)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_17\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 172.213197 \nL 413.2625 172.213197 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_18\"/>\n     <g id=\"text_9\">\n      <!-- 150 -->\n      <g transform=\"translate(7.2 177.532103)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_19\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 142.351445 \nL 413.2625 142.351445 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_20\"/>\n     <g id=\"text_10\">\n      <!-- 200 -->\n      <g transform=\"translate(7.2 147.670352)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_6\">\n     <g id=\"line2d_21\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 112.489694 \nL 413.2625 112.489694 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_22\"/>\n     <g id=\"text_11\">\n      <!-- 250 -->\n      <g transform=\"translate(7.2 117.8086)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_23\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 82.627943 \nL 413.2625 82.627943 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_24\"/>\n     <g id=\"text_12\">\n      <!-- 300 -->\n      <g transform=\"translate(7.2 87.946849)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_8\">\n     <g id=\"line2d_25\">\n      <path clip-path=\"url(#p01a0f6419d)\" d=\"M 37.4225 52.766192 \nL 413.2625 52.766192 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_26\"/>\n     <g id=\"text_13\">\n      <!-- 350 -->\n      <g transform=\"translate(7.2 58.085098)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 54.506136 261.79845 \nL 61.408616 261.79845 \nL 61.408616 214.019648 \nL 54.506136 214.019648 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 71.762335 261.79845 \nL 78.664814 261.79845 \nL 78.664814 261.79845 \nL 71.762335 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 89.018533 261.79845 \nL 95.921012 261.79845 \nL 95.921012 261.79845 \nL 89.018533 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 106.274731 261.79845 \nL 113.177211 261.79845 \nL 113.177211 261.79845 \nL 106.274731 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_7\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 123.53093 261.79845 \nL 130.433409 261.79845 \nL 130.433409 261.79845 \nL 123.53093 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_8\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 140.787128 261.79845 \nL 147.689607 261.79845 \nL 147.689607 261.79845 \nL 140.787128 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 158.043326 261.79845 \nL 164.945806 261.79845 \nL 164.945806 261.79845 \nL 158.043326 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 175.299525 261.79845 \nL 182.202004 261.79845 \nL 182.202004 261.79845 \nL 175.299525 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 192.555723 261.79845 \nL 199.458202 261.79845 \nL 199.458202 261.79845 \nL 192.555723 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_12\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 209.811921 261.79845 \nL 216.714401 261.79845 \nL 216.714401 261.79845 \nL 209.811921 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_13\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 227.06812 261.79845 \nL 233.970599 261.79845 \nL 233.970599 203.866653 \nL 227.06812 203.866653 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 244.324318 261.79845 \nL 251.226798 261.79845 \nL 251.226798 261.79845 \nL 244.324318 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 261.580517 261.79845 \nL 268.482996 261.79845 \nL 268.482996 261.79845 \nL 261.580517 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 278.836715 261.79845 \nL 285.739194 261.79845 \nL 285.739194 261.79845 \nL 278.836715 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_17\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 296.092913 261.79845 \nL 302.995393 261.79845 \nL 302.995393 261.79845 \nL 296.092913 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_18\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 313.349112 261.79845 \nL 320.251591 261.79845 \nL 320.251591 261.79845 \nL 313.349112 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 330.60531 261.79845 \nL 337.507789 261.79845 \nL 337.507789 261.79845 \nL 330.60531 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 347.861508 261.79845 \nL 354.763988 261.79845 \nL 354.763988 261.79845 \nL 347.861508 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 365.117707 261.79845 \nL 372.020186 261.79845 \nL 372.020186 261.79845 \nL 365.117707 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_22\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 382.373905 261.79845 \nL 389.276384 261.79845 \nL 389.276384 39.627021 \nL 382.373905 39.627021 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_23\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 61.408616 261.79845 \nL 68.311095 261.79845 \nL 68.311095 180.574487 \nL 61.408616 180.574487 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 78.664814 261.79845 \nL 85.567293 261.79845 \nL 85.567293 261.79845 \nL 78.664814 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 95.921012 261.79845 \nL 102.823492 261.79845 \nL 102.823492 261.79845 \nL 95.921012 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 113.177211 261.79845 \nL 120.07969 261.79845 \nL 120.07969 261.79845 \nL 113.177211 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_27\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 130.433409 261.79845 \nL 137.335888 261.79845 \nL 137.335888 261.79845 \nL 130.433409 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_28\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 147.689607 261.79845 \nL 154.592087 261.79845 \nL 154.592087 261.79845 \nL 147.689607 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_29\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 164.945806 261.79845 \nL 171.848285 261.79845 \nL 171.848285 261.79845 \nL 164.945806 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_30\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 182.202004 261.79845 \nL 189.104483 261.79845 \nL 189.104483 261.79845 \nL 182.202004 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_31\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 199.458202 261.79845 \nL 206.360682 261.79845 \nL 206.360682 261.79845 \nL 199.458202 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_32\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 216.714401 261.79845 \nL 223.61688 261.79845 \nL 223.61688 261.79845 \nL 216.714401 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_33\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 233.970599 261.79845 \nL 240.873079 261.79845 \nL 240.873079 209.839003 \nL 233.970599 209.839003 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_34\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 251.226798 261.79845 \nL 258.129277 261.79845 \nL 258.129277 261.79845 \nL 251.226798 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_35\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 268.482996 261.79845 \nL 275.385475 261.79845 \nL 275.385475 261.79845 \nL 268.482996 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_36\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 285.739194 261.79845 \nL 292.641674 261.79845 \nL 292.641674 261.79845 \nL 285.739194 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_37\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 302.995393 261.79845 \nL 309.897872 261.79845 \nL 309.897872 261.79845 \nL 302.995393 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_38\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 320.251591 261.79845 \nL 327.15407 261.79845 \nL 327.15407 261.79845 \nL 320.251591 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_39\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 337.507789 261.79845 \nL 344.410269 261.79845 \nL 344.410269 261.79845 \nL 337.507789 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_40\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 354.763988 261.79845 \nL 361.666467 261.79845 \nL 361.666467 261.79845 \nL 354.763988 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_41\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 372.020186 261.79845 \nL 378.922665 261.79845 \nL 378.922665 261.79845 \nL 372.020186 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_42\">\n    <path clip-path=\"url(#p01a0f6419d)\" d=\"M 389.276384 261.79845 \nL 396.178864 261.79845 \nL 396.178864 190.727482 \nL 389.276384 190.727482 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_43\">\n    <path d=\"M 37.4225 261.79845 \nL 37.4225 28.51845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"patch_44\">\n    <path d=\"M 413.2625 261.79845 \nL 413.2625 28.51845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"patch_45\">\n    <path d=\"M 37.4225 261.79845 \nL 413.2625 261.79845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"patch_46\">\n    <path d=\"M 37.4225 28.51845 \nL 413.2625 28.51845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"text_14\">\n    <!-- Relative distribution of Pclass -->\n    <g transform=\"translate(76.82315 22.51845)scale(0.2016 -0.2016)\">\n     <defs>\n      <path d=\"M 44.390625 34.1875 \nQ 47.5625 33.109375 50.5625 29.59375 \nQ 53.5625 26.078125 56.59375 19.921875 \nL 66.609375 0 \nL 56 0 \nL 46.6875 18.703125 \nQ 43.0625 26.03125 39.671875 28.421875 \nQ 36.28125 30.8125 30.421875 30.8125 \nL 19.671875 30.8125 \nL 19.671875 0 \nL 9.8125 0 \nL 9.8125 72.90625 \nL 32.078125 72.90625 \nQ 44.578125 72.90625 50.734375 67.671875 \nQ 56.890625 62.453125 56.890625 51.90625 \nQ 56.890625 45.015625 53.6875 40.46875 \nQ 50.484375 35.9375 44.390625 34.1875 \nz\nM 19.671875 64.796875 \nL 19.671875 38.921875 \nL 32.078125 38.921875 \nQ 39.203125 38.921875 42.84375 42.21875 \nQ 46.484375 45.515625 46.484375 51.90625 \nQ 46.484375 58.296875 42.84375 61.546875 \nQ 39.203125 64.796875 32.078125 64.796875 \nz\n\" id=\"DejaVuSans-82\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n      <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"/>\n      <path id=\"DejaVuSans-32\"/>\n      <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n      <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\nM 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 75.984375 \nL 18.109375 75.984375 \nz\n\" id=\"DejaVuSans-98\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"/>\n      <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n      <path d=\"M 37.109375 75.984375 \nL 37.109375 68.5 \nL 28.515625 68.5 \nQ 23.6875 68.5 21.796875 66.546875 \nQ 19.921875 64.59375 19.921875 59.515625 \nL 19.921875 54.6875 \nL 34.71875 54.6875 \nL 34.71875 47.703125 \nL 19.921875 47.703125 \nL 19.921875 0 \nL 10.890625 0 \nL 10.890625 47.703125 \nL 2.296875 47.703125 \nL 2.296875 54.6875 \nL 10.890625 54.6875 \nL 10.890625 58.5 \nQ 10.890625 67.625 15.140625 71.796875 \nQ 19.390625 75.984375 28.609375 75.984375 \nz\n\" id=\"DejaVuSans-102\"/>\n      <path d=\"M 19.671875 64.796875 \nL 19.671875 37.40625 \nL 32.078125 37.40625 \nQ 38.96875 37.40625 42.71875 40.96875 \nQ 46.484375 44.53125 46.484375 51.125 \nQ 46.484375 57.671875 42.71875 61.234375 \nQ 38.96875 64.796875 32.078125 64.796875 \nz\nM 9.8125 72.90625 \nL 32.078125 72.90625 \nQ 44.34375 72.90625 50.609375 67.359375 \nQ 56.890625 61.8125 56.890625 51.125 \nQ 56.890625 40.328125 50.609375 34.8125 \nQ 44.34375 29.296875 32.078125 29.296875 \nL 19.671875 29.296875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-80\"/>\n      <path d=\"M 48.78125 52.59375 \nL 48.78125 44.1875 \nQ 44.96875 46.296875 41.140625 47.34375 \nQ 37.3125 48.390625 33.40625 48.390625 \nQ 24.65625 48.390625 19.8125 42.84375 \nQ 14.984375 37.3125 14.984375 27.296875 \nQ 14.984375 17.28125 19.8125 11.734375 \nQ 24.65625 6.203125 33.40625 6.203125 \nQ 37.3125 6.203125 41.140625 7.25 \nQ 44.96875 8.296875 48.78125 10.40625 \nL 48.78125 2.09375 \nQ 45.015625 0.34375 40.984375 -0.53125 \nQ 36.96875 -1.421875 32.421875 -1.421875 \nQ 20.0625 -1.421875 12.78125 6.34375 \nQ 5.515625 14.109375 5.515625 27.296875 \nQ 5.515625 40.671875 12.859375 48.328125 \nQ 20.21875 56 33.015625 56 \nQ 37.15625 56 41.109375 55.140625 \nQ 45.0625 54.296875 48.78125 52.59375 \nz\n\" id=\"DejaVuSans-99\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-82\"/>\n     <use x=\"64.982422\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"126.505859\" xlink:href=\"#DejaVuSans-108\"/>\n     <use x=\"154.289062\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"215.568359\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"254.777344\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"282.560547\" xlink:href=\"#DejaVuSans-118\"/>\n     <use x=\"341.740234\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"403.263672\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"435.050781\" xlink:href=\"#DejaVuSans-100\"/>\n     <use x=\"498.527344\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"526.310547\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"578.410156\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"617.619141\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"658.732422\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"686.515625\" xlink:href=\"#DejaVuSans-98\"/>\n     <use x=\"749.992188\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"813.371094\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"852.580078\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"880.363281\" xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"941.544922\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"1004.923828\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"1036.710938\" xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"1097.892578\" xlink:href=\"#DejaVuSans-102\"/>\n     <use x=\"1133.097656\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"1164.884766\" xlink:href=\"#DejaVuSans-80\"/>\n     <use x=\"1225.1875\" xlink:href=\"#DejaVuSans-99\"/>\n     <use x=\"1280.167969\" xlink:href=\"#DejaVuSans-108\"/>\n     <use x=\"1307.951172\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"1369.230469\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"1421.330078\" xlink:href=\"#DejaVuSans-115\"/>\n    </g>\n   </g>\n   <g id=\"legend_1\">\n    <g id=\"patch_47\">\n     <path d=\"M 47.2225 80.8172 \nL 153.502187 80.8172 \nQ 156.302188 80.8172 156.302188 78.0172 \nL 156.302188 38.31845 \nQ 156.302188 35.51845 153.502187 35.51845 \nL 47.2225 35.51845 \nQ 44.4225 35.51845 44.4225 38.31845 \nL 44.4225 78.0172 \nQ 44.4225 80.8172 47.2225 80.8172 \nz\n\" style=\"fill:#f0f0f0;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;stroke-width:0.5;\"/>\n    </g>\n    <g id=\"patch_48\">\n     <path d=\"M 50.0225 51.756262 \nL 78.0225 51.756262 \nL 78.0225 41.956262 \nL 50.0225 41.956262 \nz\n\" style=\"fill:#ff0000;\"/>\n    </g>\n    <g id=\"text_15\">\n     <!-- Dead -->\n     <g transform=\"translate(89.2225 51.756262)scale(0.14 -0.14)\">\n      <defs>\n       <path d=\"M 19.671875 64.796875 \nL 19.671875 8.109375 \nL 31.59375 8.109375 \nQ 46.6875 8.109375 53.6875 14.9375 \nQ 60.6875 21.78125 60.6875 36.53125 \nQ 60.6875 51.171875 53.6875 57.984375 \nQ 46.6875 64.796875 31.59375 64.796875 \nz\nM 9.8125 72.90625 \nL 30.078125 72.90625 \nQ 51.265625 72.90625 61.171875 64.09375 \nQ 71.09375 55.28125 71.09375 36.53125 \nQ 71.09375 17.671875 61.125 8.828125 \nQ 51.171875 0 30.078125 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-68\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-68\"/>\n      <use x=\"77.001953\" xlink:href=\"#DejaVuSans-101\"/>\n      <use x=\"138.525391\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"199.804688\" xlink:href=\"#DejaVuSans-100\"/>\n     </g>\n    </g>\n    <g id=\"patch_49\">\n     <path d=\"M 50.0225 72.305637 \nL 78.0225 72.305637 \nL 78.0225 62.505637 \nL 50.0225 62.505637 \nz\n\" style=\"fill:#0000ff;\"/>\n    </g>\n    <g id=\"text_16\">\n     <!-- Survived -->\n     <g transform=\"translate(89.2225 72.305637)scale(0.14 -0.14)\">\n      <defs>\n       <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-83\"/>\n      <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n      <use x=\"126.855469\" xlink:href=\"#DejaVuSans-114\"/>\n      <use x=\"167.96875\" xlink:href=\"#DejaVuSans-118\"/>\n      <use x=\"227.148438\" xlink:href=\"#DejaVuSans-105\"/>\n      <use x=\"254.931641\" xlink:href=\"#DejaVuSans-118\"/>\n      <use x=\"314.111328\" xlink:href=\"#DejaVuSans-101\"/>\n      <use x=\"375.634766\" xlink:href=\"#DejaVuSans-100\"/>\n     </g>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"p01a0f6419d\">\n   <rect height=\"233.28\" width=\"375.84\" x=\"37.4225\" y=\"28.51845\"/>\n  </clipPath>\n </defs>\n</svg>\n",
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEeCAYAAADFHWEmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA6gklEQVR4nO3de1wU5eI/8A8uIojIEi2LKGBcRCEUReWIiSCKGQpSKphacSoTL6kph9C8kYqG+s0SkRQ95QUVsA4UialgoIhW3g4Wcg4pSgqCck3UYH9/+GOOK7flsjDo5/168Xq5M8/MPPM4u5+dZ57Z0SguLlaAiIionXVq7woQEREBDCQiIhIJBhIREYkCA4mIiESBgURERKLAQCIiIlFgIIlcaGgopFIpUlNT1bodT09PSKVStW6jtaSmpkIqlSIgIEBpekBAAKRSKa5du9Yu9dq7dy+kUin27t2rNN3e3r7d27amzUJDQ9u1Hq3h3Llz8PHxgZWVFaRSKezt7du1Pvb29u1eh6cFA6kFpFKp0p+BgQHMzMzg4eGByMhIPHz4sL2rKKgJnPb6sO4IOnIb1RfST5vS0lJMmTIFp06dwiuvvIKgoKBG9/natWu13quGhoawtLTExIkTcejQoTaqPTVGs70r8DQICgoCAFRVVSE3NxcJCQk4c+YMUlJSEB0d3c61U822bdtw79699q5Gi6xYsQILFy6EiYlJu2x//PjxGDJkCORyebtsvyGOjo44c+YMDA0N27sqLfLLL7/g9u3b8Pf3x//93/81adnu3bsL4fXgwQNcuXIFhw8fRkpKCs6dO4ePP/5YHVWmJmAgtYLg4GCl11lZWXBzc8P333+PtLQ0vPTSS+1UM9WZmpq2dxVazNjYGMbGxu22fX19fejr67fb9hvStWtX9OnTp72r0WI3b94EABgZGTV5WX19/Vrv1ePHj+O1115DeHg43n33XZiZmbVKPal52GWnBjY2Nhg+fDiAR/3dT8rJycG8efPw4osvwsjICJaWlpg2bRrOnz+v8ja+/fZbvPvuuxg0aBBMTEzQs2dPuLi4YOvWraiqqlIqK5VKcfLkSQDAgAEDhG6Lx/u9n7yGFBcXB6lUisDAwDq3X11djX79+sHExARlZWVK8/71r3/B29sbvXv3hpGREQYNGoSVK1eitLRU5f0DgIKCAsydOxfW1tYwNjbGSy+9VOv6zOPqu4aUkJAALy8v2NjYwMjICDY2Nhg7diw2btwolGlKG129ehWff/45/va3v0Eul+P1118HUP81pBr379/H6tWr0b9/fxgZGWHgwIH45JNP8ODBA6VyNV1M9XVFPbmfoaGhmDBhAgAgOjpaqWuqpi4NXUPKycnB7NmzYWtrC5lMBmtra7z11lu4dOlSrbI1+xgaGoqLFy9iypQpMDMzQ48ePTBu3DicPn26zjo35F//+hc8PT1hZmYGuVyOoUOHYvXq1UrH1ZNtsn79+lr72ByjRo2CtbU1qqura71X//vf/2L+/PkYMGAA5HI5XnjhBYwaNQphYWGNrrekpASbN2/G+PHj0a9fP8hkMlhaWsLPzw8ZGRl1LpOamgpfX1/Y2dnByMgIVlZWcHV1xdKlS6FQKJTWvX79egwbNgympqbo2bMn+vfvj+nTp6v9WrO68QxJzTQ1lZv4xIkTmDZtGiorKzF27FhYWlri5s2bSEhIwNGjR7Fv3z64u7s3ut5Vq1ahU6dOGDx4MExMTFBSUoITJ05gyZIl+OWXX7Bjxw6hbFBQEPbt24fr169j1qxZwrf4hr7Ne3p6Ql9fH3FxcVizZg20tLSU5icnJ+PmzZuYMmUK9PT0hOmLFi1CVFQUevbsifHjx0MqleKnn37Cp59+iiNHjiApKUmpfH3u3LkDDw8PXL16FU5OTnB2dsatW7ewePFijBw5stHla0RFRWHRokUwMjLC2LFjIZPJUFRUhKysLOzatQuLFi1qchv94x//QEZGBsaOHQsPDw9069ZNpbq89dZbOH/+PCZMmABNTU189913WLt2Lc6fP499+/apvE9Peumll5Cbm4vo6Gi8+OKL8PT0FOY1drH93Llz8Pb2RmlpKcaOHQs7Ozv8/vvvSEhIwPfff489e/ZgzJgxtZY7f/48PvvsMzg5OeGNN97AjRs3EB8fD29vb/z444+wsbFRqe4hISHYtGkTDAwM8Oqrr0JfXx/JycnYsGEDEhMTcfjwYXTv3h36+voICgrCpUuXkJiYiOHDhws9D+oYUHD06FG88cYbuHfvHlxdXeHj44OKigr8+uuvCA0NrfeLWo0rV65g9erVcHZ2xtixYyGVSnH9+nUkJibihx9+QHR0NDw8PITyR44cga+vL/T09DBu3Dj07NkTxcXF+O9//4vIyEisWrUKmpqaUCgUmDRpEs6ePQtHR0dMnz4dWlpauHnzJk6dOoUTJ05gxIgRrd4ebYWBpAb/+c9/cOrUKQDAsGHDhOklJSXw9/dH586dcfToUfTt21eYl5WVBXd3d8yZMwcXLlxAly5dGtzGwYMH8cILLyhNq66uxqxZs3Dw4EG89957GDJkCIBHXYppaWm4fv06AgICYG5u3ug+aGtr47XXXsPOnTvx/fffw9vbW2l+zbWxadOmCdMOHDiAqKgojB8/Htu3b4eOjo4wLywsDGvWrEFoaCjWrl3b6PZXrVqFq1ev4t1331X6Rjpr1iyMHj260eVrfPnll9DS0kJqamqtaztFRUXCv5vSRpcuXcKPP/6oUjs+7sqVK0hPTxfORJctWwZPT08kJiYiNjYWkyZNatL6atR8AEVHR8Pe3r5Wt1R9FAoFZs2ahdLSUmzdulU40wOAlJQU+Pj4YNasWbh06RK6du2qtGxSUhIiIyPh6+srTNu1axcWLlyIyMhIbNq0qdHtnzlzBps2bYKJiQmOHTuGHj16AABWrlyJgIAA7N+/HyEhIdiwYQOkUimCg4Oxd+9eJCYm4qWXXlJ5Pxty4sQJZGdnQ0NDAw4ODgAeHRd///vfUVlZiZiYmFrH240bNxpdb58+ffDbb7/VumaXm5uL0aNHY+nSpUqB9NVXX0GhUCAhIQEDBgxQWubOnTvCF9vMzEycPXsW48aNq3V9WqFQ4O7duyrvuxixy64VhIaGIjQ0FKtXr8bMmTPh4uKCiooKvP/++8JBDgD79+/HnTt3EBQUpBRGwKNuvjfeeAO3bt1CSkpKo9t8MowAoFOnTpg9ezaAR33jLVXzAfXkgV9aWorvvvsOvXr1Uvo2tnXrVkgkEnz++edKYQQAH3zwAQwNDXHw4MFGt/vw4UPExMRAV1cXS5cuVZo3YMAATJkyReV96NSpEzQ1NWud4QFo9gX+efPmNTmMACAwMFCpW1RHRwcfffQRAGDPnj3NqktLZGRkICsrC4MGDVIKIwBwdXXF+PHjUVRUhO+++67WssOGDVMKIwCYPn06NDU18csvv6i0/Zp9/uCDD4QwAgANDQ2EhIRAR0cH0dHRrTZataSkRHivhoSEYPr06Xj11VehUCiUvoTs27cPpaWlePPNN+v88tOrV69Gt6Wvr1/n8WVmZgZvb29kZ2fj+vXrwvROnR59FD8Z/ADw3HPPqVROQ0NDqWxHxDOkVrB+/fpa05YtWyZ0B9Wo6TvOzMyssy//P//5D4BH36THjh3b4Dbv3LmDzz77DEeOHMG1a9dQUVGhNL/m4m9LDB48GDY2Njh69Chu374NmUwGAPj6669x7949+Pn5CW+Qe/fu4eLFizAwMMC2bdvqXF9N18KdO3cafONcuXIFf/75J4YOHVrn/TvDhw9X+brBlClTsGTJEjg5OcHHxwfOzs5wcnJq0eCHwYMHN2u5muuKj3N2doaGhgYuXrzY7Po014ULFwAALi4udc53dXVFQkICLly4gMmTJyvNe/yLVo3OnTvDyMgIxcXFLd6+kZERbG1t8fPPPyM7Oxu2trYqrbMhpaWlwnu1U6dOkEqlGD58OKZPn670Jeenn34CAKUzmOY4ffo0tm3bhrNnz+L27du1rhXevHlTGEw0ZcoUxMfHw93dHT4+PhgxYgSGDBlS64uPjY0NHBwcEBcXh9zcXLzyyitwcnLCoEGDoK2t3aL6igEDqRXUvAHv3buHn3/+GQsXLsSaNWvwwgsv4NVXXxXK3blzBwCwe/fuBtf3ZLjUtT03Nzdcu3YNjo6O8PPzg4GBASQSCUpKSrBt2zbcv3+/ZTv1/73++utYsWIFDhw4gLlz5wL43xnT49+q7969C4VCgTt37tQZ0I8rLy9vMJBqBj/UBOCTmjLCavbs2ZDJZIiKisKOHTsQGRkJABgyZAiWL1/erP725ozwqm85bW1t6OnpNXnAR2uo2WZ9+1PTxVlX3bp3717nMhKJpNagGnVsvzlMTU3rHKjxpJKSEgBo0e0DCQkJePPNN6GtrQ03Nzf07t0bXbt2RadOnZCWloaTJ08qvUfHjx+PuLg4fP7554iOjsaXX34JALC1tUVQUJDQZS6RSPDNN99g48aN+Oabb7Bq1SoAj86YfHx8EBIS0qGH9jOQWpGOjg5eeuklxMbGYtiwYZg/fz6GDx8uvLFq3sQpKSl1fsNU1e7du3Ht2jUEBQXV6kc/c+ZMvWcozeHr64uQkBBER0dj7ty5yMnJwenTpzFs2DBYWFgI5Wr2zdbWVrh+1lw167p9+3ad8wsKCpq0vsmTJ2Py5MkoLS3F2bNncfjwYXz55ZeYPHky0tLSYGVl1aT1aWhoNKl8jYKCglrD6ysrK1FWVgYDAwNhWs1ZZ30f7DUfmC1V0871tWd+fr5Sudb2+PbrOhNW9/brUzOQ5ebNm7Wu56hq7dq10NLSQnJycq0BHgsWLBBGdD7O3d0d7u7uwhfbo0ePIioqCm+99RYSEhKEQRxSqRQff/wxPv74Y1y9ehWnTp3C7t27sXfvXly/fh3x8fHNqrMY8BqSGpibm2P+/PkoKyvDmjVrhOk1gwzS09NbtP6cnBwAgJeXV615dR3owKNvVsCjgQ9NYWxsjFGjRiEzMxMXLlwQRoNNnTpVqVy3bt1ga2uL7OxspcECzdGnTx907doVmZmZdXb/1LePjenevTvc3d0RFhaGuXPnorKyEkePHhXmN7eNVFVXvU+dOgWFQoH+/fsL02o+nOu6eP7XX3/V2b1XU3dVz04ACB+29Q0VPnHiBIC6u+daQ0PbLywsxK+//gpdXV1YW1urZfv1qXmfHjlypNnryMnJgY2NTa0wqq6ubnRofM0X25UrV+Ljjz+GQqFAYmJinWV79+6N119/HQkJCejVqxd+/PHHVvvC0h4YSGoye/ZsGBoaYu/evcK1oenTp0MqlSIsLAxnzpyptYxCoUB6enqtvuYn1dy89+Qb+cKFC/XevV5zGv/4hVRV1Yyk27t3Lw4cOCB0Dzxpzpw5ePjwIWbPnl3naJ+ysjKhf74hnTt3xuTJk1FRUaEU6MCjfVRlYESNH374oc6L4jXfvh/vd29JG6kiLCxMKWDv3buH1atXA1Aerainp4e+ffsiIyMDmZmZwnSFQoF169bVGVQ1dVdlBFgNJycn2NjY4Oeff8aBAweU5p04cQIJCQkwNDTEK6+8ovI6m2L69OkAgE2bNgn/H8Cj/Vy+fDn+/PNPTJ06FZ07d1bL9uvz+uuvo3v37vjyyy+RnJxca35eXl6j6zAzM0NOTg7++OMPYVrN/99vv/1Wq3xKSgr+/PPPWtOfPE6vXr2Ky5cv1ypXXl6OiooKaGpq1rrVpCPpuDUXOT09PSxYsADLli3DmjVrsGvXLhgYGOCrr77C9OnT4eHhARcXF/Tt2xedO3dGXl4efvrpJ9y4cQNXr16tc1RYDT8/P3z22WdYsmQJ0tLSYGlpif/+979ISkrChAkT6vxtLjc3N3z99deYP38+vL29oaurC319fcycObPRfRk3bhwMDAywa9cuPHz4sNa9RzWmTZuGCxcu4IsvvoCDgwPc3d1hZmaGkpIS5Obm4tSpU3Bzc1Ppnpvly5fjxIkT2L59Oy5evAhnZ2fk5+fj66+/xujRo/H99983ug4AePvtt6GlpYVhw4bBzMwMGhoa+Pnnn5Geno7evXtj4sSJrdJGqrCxscGwYcPg5eUl3Id09epVvPLKK7WGfC9cuBDvvfcexo0bh4kTJ6Jr167IyMhAXl4eXnrpJaSlpSmVt7a2hqmpKdLT0/Huu+/C0tISEokE48aNw4svvlhnfTQ0NBAREYGJEydi1qxZ+Prrr4X7kOLj46GlpYVt27bVOaKrNQwdOhQffPABNm3ahGHDhmHixIno3r07kpOTceHCBdja2mLZsmVq2XZDnnvuOezcuRNvvPEGXn31Vbi5uWHAgAGoqKjAlStXkJqa2mgvwOzZs7Fw4UKMHDlS+P+uGdX48ssv4/Dhw0rlP/roI+Tm5mL48OEwMzODtrY2MjMzcezYMTz33HN48803AQD//ve/MX36dPTv3x+2trbo0aMHiouLkZSUhLt372LOnDnQ1dVVW9uoGwNJjd555x1s3boV33zzDRYsWIABAwbAxcUFJ0+exJYtW3Ds2DGcOXMGmpqakMvlGDJkCFasWNFon3mPHj3w/fffY+XKlTh9+jSOHz8Oa2trbNy4ESNHjqwzkKZPn468vDwcPHgQ4eHhePjwIUxNTVX6sO3SpQsmTZqE7du3A1D+Nv+kTz75BB4eHoiKikJaWhru3r0LfX19mJiY4O233641Wqs+hoaGSEpKQkhICA4fPowLFy7AysoKGzZsgJmZmcqBtHLlShw/fhyXLl3CsWPHoKmpiV69eiEoKAjvvfee0rWLlrSRKnbt2oVPPvkEBw8eRH5+Pnr06IHg4GAsXLiw1nUpX19fKBQKfPbZZ9i/fz+6deuGUaNGYffu3bXOGoFH15327t2LFStW4MiRIygtLYVCoYCJiUm9gQQAgwYNQkpKCsLCwpCSkoJjx45BX18fnp6eWLRokVJXojosX74c/fv3xxdffIGYmBjcv38f5ubmWLx4MebPn6/STdTqMHr0aKSkpODTTz/FiRMnkJqaCj09PVhYWGDJkiWNLu/v7w8tLS1EREQgOjoa2traGDZsGMLDwxEfH18rkBYtWoTvvvsO586dE3o+TExMEBAQgNmzZwtDzQcOHIhFixYhLS0NycnJuHv3Lp577jn06dMHa9euVfqC1RFpFBcXKxovRkREpF68hkRERKLAQCIiIlFgIBERkSgwkIiISBQYSEREJAoMJCIiEgUGEhERicJTGUjZ2dntXYWnEttVPdiu6sO2VQ91tetTGUhERNTxMJCIiEgUGEhERCQKDCQiIhKFDvlr33/99VeDj/nW1tbu0A+pEquWtqumpmaH/ml8IlKvDhdIf/31F8rKyiCVSut9lHSXLl2UHrxGraOl7VpRUYH79++jS5curVgrInpadLguu4qKigbDiMSra9euqKysbO9qEJFIdbhAAsAw6qD4/0ZEDelwXXZERNQy+o89KflJJcXFbVaPJ3XIMyQiInr6MJCeEYGBgfD09GzvahAR1eup6bJ7/BRUvw2219TT2oCAAERHRwN4NPxZKpWib9++8Pb2xltvvYXOnTuroZZERB0Hz5DakKurK7KysnDx4kUcOnQIL7/8MkJDQzFu3LgG76siInoWMJDaUJcuXSCXy2FiYoL+/ftj7ty5+Pbbb3HhwgVs3rwZAPDgwQOsWLECtra2MDExgZubG44dOyaso6qqCnPnzkX//v1hbGyMQYMGYfPmzaiurlYq89FHH8Hc3Bzm5ub48MMPUVVV1eb7S0TUFAykdmZrawt3d3ckJCQAAObMmYOTJ09i+/btOHXqFKZOnQo/Pz9cunQJAFBdXY0ePXrgn//8JzIyMrBs2TJs3LgRe/bsEda5ZcsWfPXVV/j000/xww8/oKqqCjExMe2yf0REqnpqriF1ZH379sWJEyfw+++/IzY2FhcvXoSpqSkAYObMmUhJScE///lPbNy4EZ07d8bSpUuFZc3NzXHhwgXExcXhjTfeAABERETg/fffh4+PDwBg/fr1OH78eNvvGBFREzCQREChUEBDQwMXLlyAQqHA3/72N6X59+/fh4uLi/B6586d+Oqrr3D9+nVUVlbi4cOHQoCVlJTg1q1bGDJkiFC+U6dOcHR0RF5eXtvsEBFRMzTaZbd9+3Y4OzvD1NQUpqamGDNmDJKSkoT5AQEBkEqlSn+jR49WWsf9+/cRGBgICwsLmJiYwM/Pjx+Oj/ntt9/Qu3dvVFdXQ0NDA8ePH0dqaqrwd+bMGWzZsgUAcOjQIQQHB+P1119HXFwcUlNT8fbbb+PBgwftvBdERC3T6BmSiYkJVq1aBUtLS1RXVyM6OhrTpk1DSkoKXnzxRQCPRo9FRkYKy2hpaSmtIzg4GImJiYiKioKBgQGWLl0KX19fnDhxAhKJpJV3qWO5fPkyjh07hsWLF6N///5QKBTIz89XOiN6XHp6OhwdHTFz5kxh2u+//y78W19fH8bGxvjpp58wcuRIAI/OwH755RfI5XL17gwRUQs0GkhP3ky5bNkyREVF4ezZs0Ig1Yweq0tJSQl2796N8PBwuLm5AQAiIyNhb2+PlJQUuLu7t3QfOoz79+8jPz8f1dXVKCwsxIkTJ7Bp0yY4ODhg3rx50NXVxZQpUzB79mysWbMGAwYMwN27d5GWlgZzc3N4eXnBysoK0dHR+OGHH2BhYYG4uDicOnUK+vr/u/tq1qxZ2LRpE6ysrGBra4sdO3YgPz+fgUREotaka0hVVVX45ptvUFFRgaFDhwrT09PTYWVlBX19fQwfPhzLli2DTCYDAJw/fx4PHz7EqFGjhPK9evWCjY0NMjIynqlASklJgY2NDSQSCfT19dGvXz8EBQXB399fOKsMDw/Hhg0bsHz5cvzxxx8wMDDAoEGDMGLECACAv78/Ll26hHfeeQcKhQJeXl6YM2eO0ii7uXPnIj8/H/PmzQMA+Pr6YvLkycjKymr7nSYiUpFGcXGxorFCmZmZ8PDwQGVlJXR1dbF9+3aMHTsWABAXFwcdHR2Ym5sjNzcXq1evRnV1NVJSUtClSxfExMRg1qxZKCwsVPq15wkTJsDS0hKffvppvdvNzs6uNU1bW1sIO+p4bt++zUdQELWzwY8NenrST2fPqm271tbWDc5X6QzJ2toaqampKCkpQXx8PAICAvDtt9/C1tYWr732mlDOzs4ODg4OsLe3R1JSEry8vOpdZ83IsqZWvqSkpNGHxFVWVvIBfWrQGu3avXt3YUQgPZKdnd3oG5Wah23bdKq0l7raVaUbY7W0tGBhYYGBAwdixYoVsLe3x9atW+ss26NHD5iYmCAnJwcAYGRkhKqqKhQVFSmVKyws5JkOEREJmvVLDdXV1fUOMy4qKsLNmzeFC+gODg7o3LkzkpOThTJ5eXnIysqCk5NTczZPRERPoUa77FauXAkPDw/07NkT5eXliI2NRVpaGg4ePIjy8nKsW7cOXl5ekMvlyM3NRUhICGQyGcaPHw/g0TDkGTNmYPny5ZDJZMKwbzs7O7i6uqp7/4iIqINoNJDy8/Mxc+ZMFBQUoHv37rCzs0NsbCzc3d1x7949XL58Gfv370dJSQnkcjlGjBiBXbt2QU9PT1jH2rVrIZFI4O/vj8rKSri4uGDbtm3P/D1IRET0PyqNshOTkpISpXtu6sJBDerRGu2qyv/fs4YX3tWHbVu3lj7CvF0HNRAREakbA4mIiESBgURERKLAQHpGeHp6IjAwUO3b6dmzJ/bu3av27RDR0+epeR6SVPr4hXL1XzQvLi5p8jKFhYUIDQ3FkSNHkJ+fL/ye3cKFC4UfnlWXPXv2QFPzqfnvJqKnED+h2tCMGTNw7949bNmyBS+88AIKCwtx8uRJ3Llzp9nrfPDgQa3HfdTFwMCg2dsgImoL7LJrI8XFxUhPT8fKlSsxcuRImJmZYdCgQZg3b57we4D29vb4/PPPlZZ7sqvN3t4eoaGhmDNnDszMzPDuu+9izJgxSo81B4DS0lIYGxsjISGh1npWrVolPCvpcR4eHggKChJe79mzB05OTpDL5XB0dERkZCSqq6uF+Tk5OfD09IRcLsfgwYNx+PDhFrYSET3LGEhtpFu3bujWrRsSExNb/GvXW7duRZ8+fZCSkoLly5djypQpOHTokFJYxMfHQ1tbW/hV9sf5+vriwoULuHLlijDt6tWrOHPmDHx9fQEAX375JT7++GMsWbIEGRkZWL16NbZs2YIdO3YAePTzUdOnT0d1dTWOHDmCLVu2YN26dbh//36L9o2Inl0MpDaiqamJ8PBwHDx4EObm5hgzZgw++ugj/PTTT01el7OzM+bPnw8LCwtYWlritddeQ2FhIVJTU4UyMTExmDhxYp3deX379oW9vT0OHjyoVN7KygqDBg0CAISFhWHVqlXw9vZG7969MW7cOMybNw9RUVEAHj3b6bfffsMXX3yBAQMG4G9/+xtCQ0Px119/NXl/iIgABlKb8vb2xm+//Yb9+/dj9OjROHPmDEaPHo2NGzc2aT0DBw5Uev3cc89h1KhRQsDcunULqampmDJlSr3rmDJlCmJjY4XXMTExQvnCwkLcuHEDCxcuRM+ePYW/NWvWCI9Lz8rKgomJidKjJAYPHoxOnXhIEVHz8NOjjWlra8PNzQ1BQUE4cuQIZsyYgXXr1uHBgwfo1KkTFArlX3Kq64xDV1e31jRfX18kJCSgsrISsbGx6NmzJ4YNG1ZvPSZPnozc3FycOXMG58+fx5UrV4RAqun627RpE1JTU4W/lJQUnD59GgBq1ZOIqKUYSO3MxsYGf/31FyorK/H888/j1q1bwrzKykql6zwNeeWVVwAASUlJwtlOQw9ANDY2houLC2JiYhATEwMnJyf07t0bwKNnWJmYmOD333+HhYWF8PfCCy/AwsICwKNuvz/++AM3btwQ1vnzzz8rXcciImoKDvtuI3fu3MGbb76J6dOnw87ODt26dcP58+fx2WefYeTIkejevTtcXFywZ88ejBs3Ds8//zw2btyo8jUZbW1tjB8/HmFhYfj3v/+NL774otFlpkyZgmXLlkFLSwuLFy9Wmvfhhx/iH//4B/T19eHh4YGHDx/ip59+QmFhIT744AO4urqiT58+mDVrFtauXYvKykosWbKE9zoRUbPx06ON6OrqYsiQIdi2bRtycnLw4MED9OjRA5MmTRKGYy9cuBC5ubmYNm0adHV1sWjRIty8eVPlbfj6+mLfvn0YMGAAbGxsGi3v5eWFxYsXo7S0FD4+Pkrz3njjDXTt2hWfffYZQkJCoK2tDRsbG7z33nsAgE6dOmHPnj14//33MXr0aPTq1QurV6/Gu+++24RWISL6Hz5+glTGx0+oBx+RoD5s27rx8RNEREQNYCAREZEoMJCIiEgUGEhERCQKjQbS9u3b4ezsDFNTU5iammLMmDFISkoS5isUCoSGhqJv374wNjaGp6cnfv31V6V13L9/H4GBgbCwsICJiQn8/PyQl5fX+ntDREQdVqOBZGJiglWrVuHEiRNITk6Gi4sLpk2bhn//+98AgM2bNyM8PBzr16/H8ePHIZPJ4OPjg7KyMmEdwcHBSEhIQFRUFBITE1FWVgZfX19UVVU1q9L8lYCOif9vRNSQRgPJ09MTY8aMgYWFBaysrLBs2TJ069YNZ8+ehUKhQEREBBYsWABvb2/Y2toiIiIC5eXlwu+klZSUYPfu3QgJCYGbmxscHBwQGRmJzMxMpKSkNLnCurq6KC4u5odbB/Tnn39yOD4R1atJN8ZWVVXhm2++QUVFBYYOHYpr164hPz8fo0aNEsro6OjA2dkZGRkZ8Pf3x/nz5/Hw4UOlMr169YKNjQ0yMjLg7u7etAprakJPTw+lpaX1liktLUX37t2btF5qXEvbVVNTE126dGnFGhHR00SlQMrMzISHhwcqKyuhq6uLPXv2wM7ODhkZGQAAmUymVF4mkwm/MFBQUACJRAJDQ8NaZQoKChrcbnZ2tso78qSWPnOI6sZ2VY+WHOvUMLZtbYMbmKdqezWnXRu7mValQLK2tkZqaipKSkoQHx+PgIAAfPvtt8L8J3/EU6FQNPjDnqqWae6dwLw7Wz3YrurBdlUftm3TqdJe7fpLDVpaWrCwsMDAgQOxYsUK2NvbY+vWrZDL5QBQ60ynsLBQOGsyMjJCVVUVioqK6i1DRETUrPuQqqur8eDBA5ibm0MulyM5OVmYV1lZifT0dDg5OQEAHBwc0LlzZ6UyeXl5yMrKEsoQERE12mW3cuVKeHh4oGfPnsLoubS0NBw8eBAaGhoICAjAxo0bYW1tDSsrK2zYsAG6urqYNGkSAEBfXx8zZszA8uXLIZPJYGBggKVLl8LOzg6urq7q3j8iIuogGg2k/Px8zJw5EwUFBejevTvs7OwQGxsrjI6bP38+7t27h8DAQBQXF8PR0RGHDh2Cnp6esI61a9dCIpHA398flZWVcHFxwbZt2yCRSNS3Z0RE1KF0uMdPqIIXMtWD7aoebFf1YdvWjY+fICIiagADiYiIRIGBREREosBAIiIiUWAgERGRKDCQiIhIFBhIREQkCgwkIiISBQYSERGJAgOJiIhEgYFERESiwEAiIiJRYCAREZEoMJCIiEgUGEhERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLQaCBt2rQJbm5uMDU1haWlJXx9fXH58mWlMgEBAZBKpUp/o0ePVipz//59BAYGwsLCAiYmJvDz80NeXl7r7g0REXVYjQZSWloa3n77bSQlJSE+Ph6ampqYOHEi7t69q1TO1dUVWVlZwl9MTIzS/ODgYCQkJCAqKgqJiYkoKyuDr68vqqqqWnePiIioQ9JsrMChQ4eUXkdGRsLMzAynT5/GuHHjhOldunSBXC6vcx0lJSXYvXs3wsPD4ebmJqzH3t4eKSkpcHd3b8k+EBHRU6DJ15DKy8tRXV0NqVSqND09PR1WVlZwdHTE+++/j9u3bwvzzp8/j4cPH2LUqFHCtF69esHGxgYZGRnNrz0RET01Gj1DetKHH34Ie3t7DB06VJg2evRoTJgwAebm5sjNzcXq1avh5eWFlJQUdOnSBQUFBZBIJDA0NFRal0wmQ0FBQb3bys7Obmr1WmVZqh/bVT3YrurDtq1tcAPzVG2v5rSrtbV1g/ObFEhLlizB6dOncfjwYUgkEmH6a6+9Jvzbzs4ODg4OsLe3R1JSEry8vOpdn0KhgIaGRr3zG6t8fbKzs5u9LNWP7aoebFf1Yds2nSrtpa52VbnLLjg4GHFxcYiPj0fv3r0bLNujRw+YmJggJycHAGBkZISqqioUFRUplSssLIRMJmt6rYmI6KmjUiAFBQUhNjYW8fHx6NOnT6Pli4qKcPPmTWGQg4ODAzp37ozk5GShTF5eHrKysuDk5NTMqhMR0dOk0S67xYsX48CBA9izZw+kUiny8/MBALq6uujWrRvKy8uxbt06eHl5QS6XIzc3FyEhIZDJZBg/fjwAQF9fHzNmzMDy5cshk8lgYGCApUuXws7ODq6urmrdQSIi6hgaDaQdO3YAALy9vZWmBwUFITg4GBKJBJcvX8b+/ftRUlICuVyOESNGYNeuXdDT0xPKr127FhKJBP7+/qisrISLiwu2bdumdC2KiIieXY0GUnFxcYPzdXR0at2rVBdtbW2EhYUhLCxM5coREdGzg79lR0REosBAIiIiUWAgERGRKDCQiIhIFBhIREQkCgwkIiISBQYSERGJAgOJiIhEgYFERESiwEAiIiJRYCAREZEoMJCIiEgUGEhERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSg0GkibNm2Cm5sbTE1NYWlpCV9fX1y+fFmpjEKhQGhoKPr27QtjY2N4enri119/VSpz//59BAYGwsLCAiYmJvDz80NeXl7r7g0REXVYjQZSWloa3n77bSQlJSE+Ph6ampqYOHEi7t69K5TZvHkzwsPDsX79ehw/fhwymQw+Pj4oKysTygQHByMhIQFRUVFITExEWVkZfH19UVVVpZ49IyKiDkWzsQKHDh1Seh0ZGQkzMzOcPn0a48aNg0KhQEREBBYsWABvb28AQEREBKytrREbGwt/f3+UlJRg9+7dCA8Ph5ubm7Aee3t7pKSkwN3dXQ27RkREHUmTryGVl5ejuroaUqkUAHDt2jXk5+dj1KhRQhkdHR04OzsjIyMDAHD+/Hk8fPhQqUyvXr1gY2MjlCEiomdbo2dIT/rwww9hb2+PoUOHAgDy8/MBADKZTKmcTCbDzZs3AQAFBQWQSCQwNDSsVaagoKDebWVnZze1eq2yLNWP7aoebFf1YdvWNriBeaq2V3Pa1drausH5TQqkJUuW4PTp0zh8+DAkEonSPA0NDaXXCoWi1rQnNVamscrXJzs7u9nLUv3YrurBdlUftm3TqdJe6mpXlbvsgoODERcXh/j4ePTu3VuYLpfLAaDWmU5hYaFw1mRkZISqqioUFRXVW4aIiJ5tKgVSUFAQYmNjER8fjz59+ijNMzc3h1wuR3JysjCtsrIS6enpcHJyAgA4ODigc+fOSmXy8vKQlZUllCEiomdbo112ixcvxoEDB7Bnzx5IpVLhmpGuri66desGDQ0NBAQEYOPGjbC2toaVlRU2bNgAXV1dTJo0CQCgr6+PGTNmYPny5ZDJZDAwMMDSpUthZ2cHV1dXte4gERF1DI0G0o4dOwBAGNJdIygoCMHBwQCA+fPn4969ewgMDERxcTEcHR1x6NAh6OnpCeXXrl0LiUQCf39/VFZWwsXFBdu2bat1LYqIiJ5NGsXFxYr2rkRr44VM9WC7qgfbVX3YtnXT//+37dSlpLi40eXbfVADERGROjGQiIhIFBhIREQkCgwkIiISBQYSERGJAgOJiIhEgYFERESiwEAiIiJRYCAREZEoMJCIiEgUGEhERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSgwkIiISBRUCqSTJ0/Cz88P/fr1g1Qqxd69e5XmBwQEQCqVKv2NHj1aqcz9+/cRGBgICwsLmJiYwM/PD3l5ea23J0RE1KGpFEgVFRWwtbXFunXroKOjU2cZV1dXZGVlCX8xMTFK84ODg5GQkICoqCgkJiairKwMvr6+qKqqavleEBFRh6epSiEPDw94eHgAAGbPnl1nmS5dukAul9c5r6SkBLt370Z4eDjc3NwAAJGRkbC3t0dKSgrc3d2bU3ciInqKtNo1pPT0dFhZWcHR0RHvv/8+bt++Lcw7f/48Hj58iFGjRgnTevXqBRsbG2RkZLRWFYiIqANT6QypMaNHj8aECRNgbm6O3NxcrF69Gl5eXkhJSUGXLl1QUFAAiUQCQ0NDpeVkMhkKCgpaowpERNTBtUogvfbaa8K/7ezs4ODgAHt7eyQlJcHLy6ve5RQKBTQ0NOqdn52d3ew6tWRZqh/bVT3YrurDtq1tcAPzVG2v5rSrtbV1g/NbJZCe1KNHD5iYmCAnJwcAYGRkhKqqKhQVFeH5558XyhUWFsLZ2bne9TRW+fpkZ2c3e1mqH9tVPdiu6sO2bTpV2ktd7aqW+5CKiopw8+ZNYZCDg4MDOnfujOTkZKFMXl4esrKy4OTkpI4qEBFRB6PSGVJ5eblwtlNdXY0bN27g4sWLMDAwgIGBAdatWwcvLy/I5XLk5uYiJCQEMpkM48ePBwDo6+tjxowZWL58OWQyGQwMDLB06VLY2dnB1dVVbTtHREQdh0qBdO7cOUyYMEF4HRoaitDQUEydOhWbNm3C5cuXsX//fpSUlEAul2PEiBHYtWsX9PT0hGXWrl0LiUQCf39/VFZWwsXFBdu2bYNEImn9vSIiog5HpUAaMWIEiouL651/6NChRtehra2NsLAwhIWFqVw5IiJ6dvC37IiISBQYSEREJApqGfYtdlKpfr3ziotL2rAmRERUg2dIREQkCgwkIiISBQYSERGJAgOJiIhEgYFERESiwEAiIiJRYCAREZEoMJCIiEgUGEhERCQKz+QvNRARUd3a85dseIZERESiwEAiIiJRYCAREZEoMJCIiEgUGEhERCQKDCQiIhIFlQLp5MmT8PPzQ79+/SCVSrF3716l+QqFAqGhoejbty+MjY3h6emJX3/9VanM/fv3ERgYCAsLC5iYmMDPzw95eXmttydERNShqRRIFRUVsLW1xbp166Cjo1Nr/ubNmxEeHo7169fj+PHjkMlk8PHxQVlZmVAmODgYCQkJiIqKQmJiIsrKyuDr64uqqqrW2xsiIuqwVAokDw8PLF++HN7e3ujUSXkRhUKBiIgILFiwAN7e3rC1tUVERATKy8sRGxsLACgpKcHu3bsREhICNzc3ODg4IDIyEpmZmUhJSWn1nSIioo6nxdeQrl27hvz8fIwaNUqYpqOjA2dnZ2RkZAAAzp8/j4cPHyqV6dWrF2xsbIQyRET0bGtxIOXn5wMAZDKZ0nSZTIaCggIAQEFBASQSCQwNDestQ0REz7ZW+y07DQ0NpdcKhaLWtCc1ViY7O7vZ9Wl42cFq2eazgO2jHmxX9WHb1lb/J2DDHm/L5rSrtbV1g/NbHEhyuRzAo7OgXr16CdMLCwuFsyYjIyNUVVWhqKgIzz//vFIZZ2fnetfdWOXrk52d3exlm7vcs6Al7Ur1q2lXfam03jIlxcVtVp+nCY/Z1lXTlupq1xZ32Zmbm0MulyM5OVmYVllZifT0dDg5OQEAHBwc0LlzZ6UyeXl5yMrKEsoQEdGzTaUzpPLycuTk5AAAqqurcePGDVy8eBEGBgYwNTVFQEAANm7cCGtra1hZWWHDhg3Q1dXFpEmTAAD6+vqYMWMGli9fDplMBgMDAyxduhR2dnZwdXVV284REVHHoVIgnTt3DhMmTBBeh4aGIjQ0FFOnTkVERATmz5+Pe/fuITAwEMXFxXB0dMShQ4egp6cnLLN27VpIJBL4+/ujsrISLi4u2LZtGyQSSevvFRERdTgaxcXFivauRGtrrH+zPR9A1ZGxP149eA1JfXjM1q2hY00D9UdCzeejaK8hERERtQY+wpyoA+BZPT0LeIZERESiwEAiIiJRYCAREZEoMJCIiEgUntpBDQ0Na0QDwxqJiKh98AyJiIhEgYFERESiwEAiIiJRYCAREZEoMJCIiEgUGEhERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSi0SiCFhoZCKpUq/fXp00eYr1AoEBoair59+8LY2Bienp749ddfW2PTRET0lGi1MyRra2tkZWUJf6dOnRLmbd68GeHh4Vi/fj2OHz8OmUwGHx8flJWVtdbmiYiog2u1QNLU1IRcLhf+nn/+eQCPzo4iIiKwYMECeHt7w9bWFhERESgvL0dsbGxrbZ6IiDq4Vgukq1evol+/fujfvz/+/ve/4+rVqwCAa9euIT8/H6NGjRLK6ujowNnZGRkZGa21eSIi6uBa5QF9gwcPxtatW2FtbY3CwkKEhYXBw8MDp0+fRn5+PgBAJpMpLSOTyXDz5s0G15udnd0a1WuS9thmR8L2UY/s7GwMbsGyVD+2T22tcaw1p12tra0bnN8qgTRmzBil14MHD4aDgwP27duHIUOGAAA0NDSUyigUilrTntRY5evTkgOwudt8FmRnZ7N91KCl7cr/k/rxmG1dNW2prnZVy7Dvbt26oW/fvsjJyYFcLgcAFBQUKJUpLCysddZERETPLrUEUmVlJbKzsyGXy2Fubg65XI7k5GSl+enp6XByclLH5omIqANqlS67jz76CC+//DJ69eolXEP6888/MXXqVGhoaCAgIAAbN26EtbU1rKyssGHDBujq6mLSpEmtsXkiInoKtEog/fHHH3jnnXdQVFSE559/HoMHD8YPP/wAMzMzAMD8+fNx7949BAYGori4GI6Ojjh06BD09PRaY/NERPQUaJVA2rlzZ4PzNTQ0EBwcjODg4NbYHBERPYX4W3ZERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSgwkIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUWAgERGRKDCQiIhIFBhIREQkCgwkIiISBQYSERGJQpsH0o4dO9C/f3/I5XKMHDkSp06dausqEBGRCLVpIB06dAgffvghFi1ahB9//BFDhw7F5MmTcf369basBhERiVCbBlJ4eDhef/11vPnmm7CxsUFYWBjkcjl27tzZltUgIiIR0iguLla0xYYePHiAHj16ICoqChMnThSmL168GJcvX0ZiYmJbVIOIiESqzc6QioqKUFVVBZlMpjRdJpOhoKCgrapBREQi1eaDGjQ0NJReKxSKWtOIiOjZ02aBZGhoCIlEUutsqLCwsNZZExERPXvaLJC0tLTg4OCA5ORkpenJyclwcnJqq2oQEZFIabblxubMmYP33nsPjo6OcHJyws6dO3Hr1i34+/u3ZTWIiEiE2vQa0quvvorQ0FCEhYVhxIgROH36NA4ePAgzMzOVlj958iT8/PzQr18/SKVS7N27t9FlMjMz8corr8DY2Bj9+vXD+vXroVC0ycDCDqOp7Xrt2jVIpdJaf0ePHm2jGncMmzZtgpubG0xNTWFpaQlfX19cvny50eV4zDasOe3KY1Y127dvh7OzM0xNTWFqaooxY8YgKSmpwWVa83ht0zMkAHjnnXfwzjvvNGvZiooK2NraYurUqZg1a1aj5UtLS+Hj4wNnZ2ccP34c2dnZmDNnDrp27Yp58+Y1qw5Po6a2a424uDi8+OKLwmsDAwN1VK/DSktLw9tvv41BgwZBoVBg7dq1mDhxIjIyMuptKx6zjWtOu9bgMdswExMTrFq1CpaWlqiurkZ0dDSmTZuGlJQUpXar0drHa5vdh9TaevbsiU8++QTTpk2rt0xUVBRWrlyJK1euQEdHBwAQFhaGnTt34vLlyxzdVwdV2vXatWsYMGAAkpOTMXDgwDasXcdWXl4OMzMz7N27F+PGjauzDI/ZplOlXXnMNl/v3r2xYsWKOi+ttPbx+lT/uOqZM2cwbNgwoaEAwN3dHTdv3sS1a9fasWZPhxkzZsDKygpjx47Fv/71r/aujuiVl5ejuroaUqm03jI8ZptOlXatwWNWdVVVVYiLi0NFRQWGDh1aZ5nWPl6f6kAqKCio80bcmnnUPN26dcPHH3+MXbt2ISYmBi4uLvD398eBAwfau2qi9uGHH8Le3r7eNzfAY7Y5VGlXHrOqy8zMRM+ePWFkZISFCxdiz549sLOzq7Nsax+vbX4Nqa3VdSNuXdNJdYaGhkr9wwMHDsSdO3ewefNm+Pr6tmPNxGvJkiU4ffo0Dh8+DIlE0mBZHrOqU7VdecyqztraGqmpqSgpKUF8fDwCAgLw7bffwtbWts7yrXm8PtVnSEZGRnXeiAuAN+O2MkdHR+Tk5LR3NUQpODgYcXFxiI+PR+/evRssy2NWdU1p17rwmK2blpYWLCwsMHDgQKxYsQL29vbYunVrnWVb+3h9qgNp6NChSE9PR2VlpTAtOTkZPXr0gLm5eTvW7Olz6dIlyOXy9q6G6AQFBSE2Nhbx8fHo06dPo+V5zKqmqe1aFx6zqqmursaDBw/qnNfax2uHCqTy8nJcvHgRFy9eRHV1NW7cuIGLFy8Kz1NatWoVvLy8hPKTJk2Cjo4OZs+ejcuXLyM+Ph6ffvopZs+eze6PxzS1Xfft24eYmBhkZWUhOzsbn3/+OXbs2IGZM2e21y6I0uLFi7Fv3z7s2LEDUqkU+fn5yM/PR3l5uVCGx2zTNaddecyqZuXKlTh16hSuXbuGzMxMrFq1CmlpaZg8eTIA9R+vHeoa0rlz5zBhwgThdWhoKEJDQzF16lRERETg1q1b+P3334X5+vr6+Prrr7F48WK4ublBKpVizpw5mDt3bntUX7Sa2q4AsGHDBly/fh0SiQSWlpbYsmUL++KfsGPHDgCAt7e30vSgoCAEBwcDAI/ZZmhOuwI8ZlWRn5+PmTNnoqCgAN27d4ednR1iY2Ph7u4OQP3Ha4e9D4mIiJ4uHarLjoiInl4MJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUWAgERGRKDCQiIhIFBhIREQkCv8PzNGBoPcyT/QAAAAASUVORK5CYII=\n"
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEeCAYAAADFHWEmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5g0lEQVR4nO3dfVxO9+M/8FcqsaIruboqulk3Si2aKMtEalmfCBMxbPOZtXIzGpZs5mYsljU2xIjPh9x285mbITNlRWo+m0Jba1+Tm1GJSlFS1+8Pv87HpburdNWJ1/PxuB4PnfM+57zP27mu13XO+33OpVZUVCQHERFRG+vQ1hUgIiICGEhERCQSDCQiIhIFBhIREYkCA4mIiESBgURERKLAQBK5sLAwSCQSJCcnq3Q7Pj4+kEgkKt1GS0lOToZEIkFYWJjC9Lbeh/r+ryQSCRwcHNqoVo/s3LkTEokEO3fubNN6tITExES8/vrrMDc3h0QigY+PT5vVJTc3FxKJBEFBQW1Wh2cJA+kpSCQShZeenh5MTU3h5eWFTZs2obKysq2rKKj5sM7NzW3rqoiWg4NDuwnlJ9UEzpMh/azJzc3FxIkTkZWVhXHjxiEkJARvvvlmg8vUfIF5/NW9e3fY2NhgwoQJOHHiRCvVnhqj0dYVeBaEhIQAAKqqqnDlyhUcOnQI6enpSEpKwu7du9u4dsrZuHEj7t+/39bVeCptvQ8BAQEYO3Ysevbs2WZ1qM+IESMwYMAAyGSytq7KUzl58iTKy8sREhKC4ODgJi1rYmIihNf9+/dx/vx5HD16FEePHkV4eDjee+89VVSZmoCB1AJCQ0MV/v7zzz8xZMgQHDlyBCkpKXj11VfbqGbKMzExaesqPLW23gd9fX3o6+u3aR3qo6urC11d3bauxlO7ceMGAMDAwKDJy5qamtZ6r27fvh0ffPABlixZgsmTJ6Nz584tUk9qHl6yUwErKysMGjQIAPDrr7/Wmn/p0iXMmjULL730EgwMDGBpaYlJkybh3LlzSm/j0KFDCAgIgJOTE4yNjWFsbAw3Nzds2LABVVVVCmUlEglOnToFAOjbt69w2eLxfo0n+1/i4uIgkUgwf/78Orf/8OFD2NjYoEePHigtLVWYt3//fowaNQrm5uYwMDBAv379sGTJEpSUlCi9fwCQn5+PmTNnwtraGoaGhnj11Vexa9euesvX1Yckl8uxe/duDB8+HFZWVpDJZLCzs8PIkSPx73//G8D/+gGuXr0KQPFS7OP9EzWX9CoqKhAWFoZ+/fpBKpViwYIFABrv7ysqKsLcuXNha2sLmUyGgQMHYvPmzZDLFZ/eVV8fWX37GRQUhBkzZgAAVq1apVD/mro01IeUmZmJd955B9bW1pBKpbC3t8fMmTNx+fLlWmVr9nHnzp346aef4OPjg549e8LExATjx49HdnZ2nXWuj1wux/bt2+Hp6YmePXvCyMgIgwcPxjfffKNwyfvJNpkxY0atfWyOKVOmQFtbG2VlZfj9998V5v3yyy/45z//id69e0MqlaJXr14YOXJkg8dgjT///BNLlizB0KFDYWlpCQMDA7z00kuYNWuWcJw92Q6NHac1Ll++jDlz5qBfv34wNDSEmZkZnJ2dMWPGjDrX3Z7wDElFaj5kNDQUm/jkyZOYNGkSysvLMXz4cFhaWuLGjRs4ePAgjh8/jl27dsHDw6PR9S9duhQdOnQQAqmkpAQ//fQTFi5ciF9++QVbtmwRyoaEhGDXrl24evUqAgMDhW/KDX1j9vHxga6uLuLi4rBixQp07NhRYf6PP/6IvLw8TJw4ETo6OsL0uXPnIioqCj169MCIESMgkUhw9uxZrFmzBseOHUNCQgK6dOnS6P4VFhbCy8sLly9fhouLC1xdXXHz5k3MnTsXQ4cObXT5Gp999hkiIiJgamqKUaNGQVdXF3l5ebhw4QL27NmDt99+G7q6uggJCUFkZCRKSkqES7DAo2/VT3rrrbeQkZEBDw8PjBgxAmZmZo3Wo7KyEmPGjEFJSQn8/PxQUVGB/fv3Y/78+fjzzz+xatUqpffpST4+PiguLsbhw4cxaNAghTPyuur/uB9++AGTJ09GVVUVRo4ciRdffBEXL15EdHQ0Dh06hAMHDqBPnz61lktISMDhw4fh6emJqVOnIjs7G8eOHcMvv/yCtLQ0pc8UAwMDsXfvXhgbG+PNN9+EpqYmjh49ikWLFiExMRH79u2DhoYGTE1NERISgpSUFJw6dQr/+Mc/hC9Uje1jQ+RyufBeVVNTE6Zv374dwcHB6NChA15//XVYW1ujsLAQGRkZiIyMbLTf6uDBg9i6dSsGDx4MZ2dndOzYEb///juio6Nx9OhRJCUloUePHkJ5ZY5TALh58ybc3d1x9+5d4fh78OABrl27hoMHD2LcuHFtfqXgaTCQVCA7O1s4I3nllVeE6cXFxZg6dSo0NTVx/Phx2NraKizj4eGBGTNmICMjA1paWg1uY9++fXjxxRcVplVXV2P69OnYs2cP3n//fQwYMADAo0uKKSkpuHr1KoKCgpT6AO3UqRPGjh2LrVu3IiEhASNHjlSYX9M39vgbc+/evYiKisKIESOwefNmhcsf4eHhWLFiBVauXIkVK1Y0uv1ly5bh8uXLeO+99xAeHi5MDwwMhKenZ6PL19i2bRuMjIyQmpoKbW1thXmFhYUAHp0RhYaGYteuXSgpKal1WedJV69exalTp5p0ee7mzZswNzfH6dOnhf/bBQsWwN3dHZs2bcIbb7wBFxcXpdf3uBEjRgiB9OqrrzZa/xplZWUIDAxEZWUlvvvuO7i5uQnzai5lBQYG4tSpUwof1gDw/fffIz4+HkOGDBGmLV26FF999RWio6Mxe/bsRrcfHx+PvXv3wt7eHkeOHEHXrl0BAIsXL4afnx9OnDiByMhIzJo1C2ZmZggNDUVYWBhOnToFHx8fTJo0San9bMiOHTtw79496OjoCO/H33//HR9++CG0tbVx5MgR2NvbKyxz7dq1Rtfr7++P6dOn13ofnzhxAn5+fli9ejW++uorYboyxynw6OrDnTt38Pnnn2P69OkK5SoqKkQ1kKo5eMmuBYSFhSEsLAzLly9HQEAAhg4dinv37mHWrFlwdHQUyu3Zswe3b99GSEiIQhgBgI2NDd566y3cvHkTJ0+ebHSbT4YRAHTo0AGBgYEA0CIjh2rC5slLFEVFRThy5AjMzMwUvo1v2LAB6urq+Oabb2pdi//www+hr6+Pffv2NbrdyspKxMTEQFtbGx9//LHCvL59+2L8+PFN2g9NTc1aZ6oAmt3f8/HHHzdr2U8//VThA0pfXx8ffvghALTJcOzvv/8ehYWF8PX1VQgj4NFZYN++fZGVlYWff/651rJjx45VCCMAwrf4//73v0ptf/v27QAeBVBNGAFAx44d8fnnnwNArctVT+PKlSvCe3Xx4sUYM2aMEJyLFy9Gp06dAABRUVF4+PAh5s2bVyuMACg1aMXY2LjOL5XDhg2Dra1tne/PphyndfV1aWlpKVytaI94htQC6rrc8sknn2DevHkK09LS0gAAFy9erLN/4M8//wTw6GzJy8urwW3evn0bX3/9NY4dO4bc3FyUlZUpzK/p/H0a/fv3h42NDY4fP45bt26he/fuAB71L1VUVGDChAnCN+d79+4hMzMTenp62LhxY53r69ixI27cuIHbt2+jW7du9W73jz/+wL179+Ds7FznMOxBgwYp/QE+btw4fPvtt3B2dsbo0aPxyiuvwMXFBXp6ekotXxcnJ6cmL6OhoVHnGVBNX2NmZmaz69NcGRkZAFArjGoMHToUGRkZyMjIgLOzs8K8x79o1aj5oC4qKmrS9gcPHlxr3ksvvQSpVIo///wTpaWlLfJBe/XqVeG9qq6uDn19fQwfPhwBAQEKl8nPnj0LAE06E3+SXC7Hvn37sGvXLly4cAFFRUUKfbtPXgJX9jj19vbGZ599hvnz5+P48ePw8PDAgAEDYG9vjw4d2v/5BQOpBdS8Ae/du4dffvkFwcHBWLFiBczNzeHn5yeUu337NoBHlwka8mS41LU9d3d35ObmwsnJCRMmTICenh7U1dVRXFyMjRs3oqKi4ul26v978803sXjxYsTExAg3/+3evRtqamqYOHGiQp3kcjlu377daH9IaWlpg4FUM/hBKpXWOb8pI6zCwsJgYWGBXbt24euvv8batWvRoUMHDBkyBMuWLWvWDavNGTqtr68PdXX1WtNr9rGpAz5aQs0262vPmv0sLi6uNa+u/seab/dPDqppaPtdu3atd2SbTCZDQUEBSkpKWiSQBg0ahO+//77RcjX7a2xs3OxtLVy4EJGRkTA0NISHhweMjIyEM7Ca/tzHKXucmpqa4sSJE1i1ahWOHz8u7I+BgQECAgIQHBxc53HWXjCQWtALL7yAV199FbGxsXjllVcwZ84cvPrqqzA0NAQA4bJEUlJSnd8wlbVjxw7k5uYiJCSkVn9Benp6vWcozeHv749ly5Zh165dCAoKwh9//IGzZ89i0KBBMDc3F8rV7JudnR1Onz79VNusWVdBQUGd8/Pz85Vel7q6OgIDAxEYGIjbt2/jzJkzOHDgAPbu3YsxY8YgPT29wXCsy5P9KcooLCxEVVVVrQ+Lmn18/JJVzTfd+j7Y6wqI5qjZZn3tmZeXV6tuLalr1664c+cO7t+/X2coqXr79akJ27///rtZN0oXFBRg06ZNsLOzq3MQT1xcXK1lmnKc9urVC1FRUaiqqsLFixfx008/YcuWLVi+fDmqqqoUBuW0N+3/HE+EzMzMMHv2bJSWlgrXwgEIgwxSU1Ofav2XLl0CAPj6+taaVzOY4kk1H4TV1dVN2pahoSGGDRuG8+fP48KFC3UOZgAAHR0d2NnZIScnR6ETtjl69eqFF154ARcvXqzz8k99+9iYbt264R//+Ac2btyIsWPH4tatWwr/FzVtpOw3/KZ4+PChcMn2cTX78vhItpoPwbo6z4uLi/F///d/taY3p+59+/YFgHqHTf/0008A6r481xJqtp+SklJrXlZWFgoKCmBlZdXq/SL9+/cHABw/frxZy1++fBnV1dVwd3evFUbXr1+vczj94xo7Tmuoq6ujT58+mDlzJmJjYwE8uh2kPWMgqcj06dOhr6+PXbt2CX1DkydPhkQiQXh4ONLT02stI5fLkZqaigcPHjS47pphrk++kTMyMhRG7jyu5ttVc+5TqBnNFB0djX379kFbWxujRo2qVW7GjBmorKzE9OnTcefOnVrz7969K1yfb4impibGjRuHsrKyWiPyMjIylBoYATwadVTXG1kulwtnJi+88IIw/WnaSBmfffaZwqXUwsJCREREAIDCiLFevXqha9euOHz4sHCWADwKtdDQ0DqfRlFTd2VGgNXw8fFBt27dsH///lohv3PnTvz666/o3bu38EWqpU2ZMgXAoxGVj9/LVllZKQxmeeutt1Sy7Ya8++670NDQwOrVq5GVlVVr/vXr1xtcvub9eebMGYUvCKWlpZg9ezYePnyoUL4px+m5c+fq/JJWc5w8fjy3R7xkpyJdunTBnDlzsGjRIqxYsQLbtm2Dnp4etm/fjsmTJ8PLywtubm6wtbWFpqYmrl+/jrNnz+LatWu4fPlyrU7Px02YMAFff/01QkNDkZycDEtLS/zf//2fMDw7Pj6+1jLu7u747rvvMHv2bPj6+kJHRwe6uroICAhodF+8vb2hp6eHqKgoVFZW1rr3qMakSZOQkZGBb7/9Fo6OjvDw8ICpqSmKi4tx5coVnD59Gu7u7krdWPjpp5/i5MmT2Lx5MzIzM+Hq6oq8vDz85z//gaenJ44cOdLoOu7fvw9vb2+Ym5vj5ZdfhomJCSorK5GSkoLz589jwIABCh3q7u7u+OWXXzBlyhR4eXmhU6dOMDExwYQJExrdVmMMDQ1x//59uLq6wtvbGxUVFThw4ADy8vLw/vvvKwx40NTUxPTp07Fy5Uq4ublhxIgRUFNTQ3JyMuRyOV566SVcuHBBYf3Ozs7Q1tZGfHw8NDU1YWJiAjU1Nfj7+9d7n462tjY2bNiAt956C6NHj4avry/Mzc1x4cIFHDt2DLq6uoiMjGzWJUpljB07FkePHkVMTAwGDhwIHx8f4T6kmqedPDm0uTXY2triyy+/RHBwMIYOHSrch3Tnzh1kZmaioqKiwZtxZTIZxo4di7i4OAwePBju7u4oKSlBYmIiOnXqBAcHB5w/f14o35TjdM+ePdi2bRtcXFxgYWGBbt264erVqzh8+DDU1dXxwQcfqLx9VImBpELTpk3Dhg0b8N1332HOnDno27cv3NzccOrUKaxbtw4//vgj0tPToaGhAZlMBmdnZyxZsqTRa+ZGRkY4cuQIlixZgjNnzuDEiROwtrbGl19+iSFDhtQZSFOmTMG1a9cQGxuLDRs2oLKyEiYmJkoFkpaWFvz8/LB582YAtS/XPe6LL76Al5cXoqKikJKSgjt37kBXVxfGxsaYNm2awiCPhujr6yMhIQHLli3D0aNHkZGRASsrK6xevRqmpqZKBZK2tjaWLVuG5ORk/Pzzzzhy5Ag6d+4MMzMzLF++HFOnTlUYZjt37lyUlJTgyJEjWLt2LR4+fIhBgwa1SCBpamriu+++w7JlyxAbG4vbt2/jxRdfxNy5c+t8hlpISAi0tbWxbds2bN++Hd26dYOPjw8WLVqEyZMn1yovkUgQHR2NVatW4T//+Y9wxjFw4MAGbxx9/fXXcezYMURERODkyZPYv38/pFIpJk6ciI8++kihn1AVNm3aBFdXV+zYsQM7duxAdXU1LC0tsWzZMgQGBtY5DLo1vP3227Czs8M333yDM2fO4MiRI+jWrRtsbGwwbdq0Rpf/5ptvYG5ujvj4eGzZsgXdu3eHt7c3Fi5cKJwZ1mjKcern54fKykqkpaXh/PnzuHfvHgwNDfH6669j+vTpzRoBKiZqRUVF8saLERERqRb7kIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUXgmAyknJ6etq/BMYruqBttVNdiuqqOqtn0mA4mIiNofBhIREYkCA4mIiESBgURERKLQLp/2/fDhwwZ/5rtTp04t9qua9D9P267a2tpt9vRmIhK/dvfp8PDhQ9y9excSiaTe32nR0tISfr+eWs7TtKtcLkdRURG6dOnCUCKiOrW7S3ZlZWUNhhGJk5qaGiQSSYNntkT0fGt3gQSAYdRO8f+NiBrCaydERM8ZXYmk3nnFRUWtVo8ntcszJCIievYwkJ4T8+fPh4+PT1tXg4ioXs/MJbvHT0F1W2F7TT2tDQoKwu7duwEAGhoakEgksLW1xahRo/DOO+9AU1NTBbUkImo/eIbUioYOHYrs7GxkZmYiPj4er7/+OsLCwuDt7c3RZ0T03GMgtSItLS3IZDIYGxujT58+mDlzJg4dOoSMjAysXbsWAPDgwQMsXrwYdnZ2MDIygru7O3788UdhHVVVVZg5cyb69OkDQ0ND9OvXD2vXrkV1dbVCmU8++QRmZmYwMzPDggULUFVV1er7S0TUFAykNmZnZwcPDw8cPHgQADBjxgycOnUKmzdvRmpqKiZOnIgJEybg/PnzAIDq6moYGRnhX//6F9LS0rBo0SJ8+eWXiI6OFta5bt06bN++HWvWrMEPP/yAqqoqxMTEtMn+EREp65npQ2rPbG1tcfLkSfz111+IjY1FZmYmTExMAAABAQFISkrCv/71L3z55ZfQ1NTExx9/LCxrZmaGjIwMxMXF4a233gIAREZG4oMPPsCYMWMAAKtWrcKJEydaf8eIiJqAgSQCcrkcampqyMjIgFwux8CBAxXmV1RUwM3NTfh769at2L59O65evYry8nJUVlYKAVZcXIybN29iwIABQvkOHTrAyckJ169fb50dIiJqhkYv2W3evBmurq4wMTGBiYkJXnvtNSQkJAjzg4KCIJFIFF6enp4K66ioqMD8+fNhYWEBY2NjTJgwgR+Oj/n9999hbm6O6upqqKmp4cSJE0hOThZe6enpWLduHQAgPj4eoaGhePPNNxEXF4fk5GS8++67ePDgQRvvBRHR02n0DMnY2BhLly6FpaUlqqursXv3bkyaNAlJSUl46aWXADwaPbZp0yZhmY4dOyqsIzQ0FIcPH0ZUVBT09PTw8ccfw9/fHydPnoS6unoL71L7kpWVhR9//BHz5s1Dnz59IJfLkZeXp3BG9LjU1FQ4OTkhICBAmPbXX38J/9bV1YWhoSHOnj2LIUOGAHh0BvbLL79AJpOpdmeIiJ5Co4H05M2UixYtQlRUFH7++WchkGpGj9WluLgYO3bswPr16+Hu7g4A2LRpExwcHJCUlAQPD4+n3Yd2o6KiAnl5eaiursatW7dw8uRJREREwNHREbNmzYK2tjbGjx+P6dOnY8WKFejbty/u3LmDlJQUmJmZwdfXF1ZWVti9ezd++OEHWFhYIC4uDqdPn4au7v/uvgoMDERERASsrKxgZ2eHLVu2IC8vj4FERKLWpD6kqqoqfPfddygrK4Ozs7MwPTU1FVZWVtDV1cWgQYOwaNEiSKVSAMC5c+dQWVmJYcOGCeV79uwJGxsbpKWlPVeBlJSUBBsbG6irq0NXVxe9e/fGggUL8M477whnlevXr8fq1avx6aef4u+//4aenh769euHwYMHAwCmTp2K8+fPY9q0aZDL5fD19cWMGTMURtnNnDkTeXl5mDVrFgDA398f48aNQ3Z2duvvNBGRktSKiorkjRW6ePEivLy8UF5eDm1tbWzevBnDhw8HAMTFxaFz584wMzPDlStXsHz5clRXVyMpKQlaWlqIiYlBYGAgbt26pfC055EjR8LS0hJr1qypd7s5OTm1pnXq1EkIO2p/CgoKUF5e3tbVIHqu9X9s0NOTzv78s8q2a21t3eB8pc6QrK2tkZycjJKSEuzfvx9BQUE4dOgQ7OzsMHbsWKGcvb09HB0d4eDggISEBPj6+rZ45YuLixv9kbjy8nL+QJ8KtES7du3aVRgRSI/k5OQ0+kalpmO7No8ybaaqtlXqxtiOHTvCwsICjo6OWLx4MRwcHLBhw4Y6yxoZGcHY2BiXLl0CABgYGKCqqgqFhYUK5QoKCmBgYPCU1SciomdFs57UUF1dXe8w48LCQty4cUPoQHd0dISmpiYSExOFMtevX0d2djZcXFyas3kiInoGNXrJbsmSJfDy8kKPHj1QWlqK2NhYpKSkYN++fSgtLcXKlSvh6+sLmUyGK1euYNmyZZBKpRgxYgSAR8OQp0yZgsWLF0MqlQrDvu3t7TF06FBV7x8REbUTjQZSXl4eAgICkJ+fj65du8Le3h6xsbHw8PDA/fv3kZWVhT179qC4uBgymQyDBw/Gtm3b0KVLF2EdYWFhUFdXx9SpU1FeXg43Nzds3Ljxub8HiYiI/kepUXZiUlxcrHDPTV04qEE1WqJdlfn/e96w81012K71e9qfMG/TQQ1ERESqxkAiIiJRYCAREZEoMJCeEz4+Ppg/f77Kt9OjRw/s3LlT5dshomfPM/N7SBLJ4x3lqu80LyoqbvIyt27dQlhYGI4dO4a8vDzheXbBwcHCg2dVJTo6Ghoaz8x/NxE9g/gJ1YqmTJmC+/fvY926dXjxxRdx69YtnDp1Crdv3272Oh88eFDr5z7qoqen1+xtEBG1Bl6yayVFRUVITU3FkiVLMGTIEJiamqJfv36YNWuW8DxABwcHfPPNNwrLPXmpzcHBAWFhYZgxYwZMTU3x3nvvwcvLS+FnzQGgpKQEhoaGOHDgQK31LFu2TPitpMd5eXnho48+Ev6Ojo6Gi4sLZDIZnJycsGnTJlRXVwvzL126BB8fH8hkMvTv3x9Hjx59ylYioucZA6mV6OjoQEdHB4cPH37qp11v2LABvXr1QlJSEj799FOMHz8e8fHxCmFx4MABaGlpCU9lf9z48eORkZGBP/74Q5h2+fJlpKenw9/fHwDw73//G5999hkWLlyItLQ0LF++HOvWrcOWLVsAPHp81OTJk1FdXY1jx45h3bp1WLlyJSoqKp5q34jo+cVAaiUaGhpYv3499u3bBzMzM7z22mv45JNPcPbs2Savy9XVFbNnz4aFhQUsLS3xxhtv4NatW0hOThbKxMTEYPTo0dDS0qq1vK2tLfr06YN9+/YplLeysoKTkxMAIDw8HEuXLsWoUaNgbm4Ob29vzJo1C1FRUQAe/bbT77//jm+//RZ9+/bFwIEDERYWhocPHzZ5f4iIAAZSqxo1ahR+//137NmzB56enkhPT4enpye+/PLLJq3n5ZdfVvi7W7du8PDwEALmxo0bSE5Oxvjx4+tdx/jx4xEbGyv8HRMTg3HjxgF4NPji2rVrCA4ORo8ePYTXihUrhJ9Lz87OhrGxscJPSfTv3x8dOvCQIqLm4adHK+vUqRPc3d0REhKCY8eOYcqUKVi5ciUePHiADh06QC5XfJJTXWcc2tratab5+/vj4MGDKC8vR1xcHHr06AFXV9d66+Hn54erV68iPT0d586dwx9//CFcrqu59BcREYHk5GThlZSUhDNnzjzN7hMR1YuB1MZsbGzw8OFDlJeXo3v37rh586Ywr7y8XKGfpyHe3t4AgISEBOFs5/Ff6H2SoaEh3NzcEBMTg5iYGDg7O8Pc3BzAo9+wMjIywl9//QULCwvh9eKLL8LCwkKo999//41r164J6/zvf/+r0I9FRNQUHPbdSm7fvo23334bkydPhr29PXR0dHDu3Dl8/fXXGDJkCLp27Qo3NzdER0fD29sb3bt3x5dffomqqiql1t+pUyeMHDkS4eHhuHDhAjZt2tToMuPHj8cnn3yCjh07Yu7cuQrzQkND8dFHH0FXVxdeXl6orKzE2bNncevWLXz44YcYOnQoevXqhcDAQHz++ecoLy/HwoULea8TETUbPz1aiba2NgYMGICNGzfi0qVLePDgAYyMjODn5ycMxw4ODsaVK1cwadIkaGtrY+7cubhx44bS2xg/fjx27tyJPn36wNbWttHyI0eOxNy5c1FSUoI33nhDYd5bb72FF154AV9//TWWLVuGTp06wcbGBu+//z4AoEOHDoiOjsYHH3wAT09P9OzZE8uXL8d7773XhFYhIvof/vwEKY0/P6Ea/JkE1WC71o8/P0FERNQABhIREYkCA4mIiESBgURERKLQaCBt3rwZrq6uMDExgYmJCV577TUkJCQI8+VyOcLCwmBrawtDQ0P4+Pjgt99+U1hHUVERAgICYGpqClNTUwQEBKBIiY4zIiJ6fjQaSMbGxli6dClOnjyJxMREuLm5YdKkSbhw4QIAYO3atVi/fj1WrVqFEydOQCqVYsyYMbh7966wjmnTpiEzMxOxsbGIjY1FZmamMHy4OZ58mgG1D/x/I6KGNBpIPj4+eO2112BhYQErKyssWrQIOjo6+PnnnyGXyxEZGYk5c+Zg1KhRsLOzQ2RkJEpLS4XnpGVnZ+P48eNYs2YNnJ2d4ezsjK+++goJCQnIyclpcoW1tbVRVFTED7d2Ri6Xo6ioqM7HHhERAU28MbaqqgrfffcdysrK4OzsjNzcXOTl5WHYsGFCmc6dO8PV1RVpaWmYOnUq0tPToaOjAxcXF6HMwIEDoa2tjbS0tCaPZdfQ0ECXLl1QUlJSb5mSkhJ07dq1Seulxj1tu3bp0oVPciCiein16XDx4kV4eXmhvLwc2traiI6Ohr29PdLS0gAAUqlUobxUKhWeMJCfnw99fX2F56qpqamhe/fuyM/Pb3C7zTmDqvG0vzlEdWO7qsbTHOtUP7Zr3fo3ME/ZNmtO2zZ2AqJUIFlbWyM5ORklJSXYv38/goKCcOjQoSZXpqmaeycw79BWDbararBdVYPt2jzKtFmbPqmhY8eOsLCwgKOjIxYvXgwHBwds2LABMpkMAFBQUKBQvqCgAAYGBgAePTm6sLBQoc9HLpfj1q1bQhkiIqJm3YdUXV2NBw8ewMzMDDKZDImJicK88vJypKamCn1Gzs7OKC0tRXp6ulAmPT0dZWVlCv1KRET0fGv0kt2SJUvg5eWFHj16CKPnUlJSsG/fPqipqSEoKAgRERGwtraGlZUVVq9eDW1tbfj5+QF49Ls5np6eCA4Oxpo1awA8eqr18OHDeTpNRESCRgMpLy8PAQEByM/PR9euXWFvb4/Y2Fh4eHgAAGbPno379+9j/vz5KCoqgpOTE+Lj49GlSxdhHVu2bMFHH32EsWPHAnj0Y3JffPGFinaJiIjao3b38xPKYGemarBdVYPtqhps1/rx5yeIiIgawEAiIiJRYCAREZEoMJCIiEgUGEhERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSgwkIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUWAgERGRKDQaSBEREXB3d4eJiQksLS3h7++PrKwshTJBQUGQSCQKL09PT4UyFRUVmD9/PiwsLGBsbIwJEybg+vXrLbs3RETUbjUaSCkpKXj33XeRkJCAAwcOQENDA6NHj8adO3cUyg0dOhTZ2dnCKyYmRmF+aGgoDh48iKioKBw+fBh3796Fv78/qqqqWnaPiIioXdJorEB8fLzC35s2bYKpqSnOnDkDb29vYbqWlhZkMlmd6yguLsaOHTuwfv16uLu7C+txcHBAUlISPDw8nmYfiIjoGdDkPqTS0lJUV1dDIpEoTE9NTYWVlRWcnJzwwQcfoKCgQJh37tw5VFZWYtiwYcK0nj17wsbGBmlpac2vPRERPTMaPUN60oIFC+Dg4ABnZ2dhmqenJ0aOHAkzMzNcuXIFy5cvh6+vL5KSkqClpYX8/Hyoq6tDX19fYV1SqRT5+fn1bisnJ6ep1WuRZal+bFfVYLuqBtu1bv0bmKdsmzWnba2trRuc36RAWrhwIc6cOYOjR49CXV1dmD527Fjh3/b29nB0dISDgwMSEhLg6+vbxCr/T2OVr09OTk6zl6X6sV1Vg+2qGmzX5lGmzVTVtkpfsgsNDUVcXBwOHDgAc3PzBssaGRnB2NgYly5dAgAYGBigqqoKhYWFCuUKCgpgYGDQ9FoTEdEzR6lACgkJEcKoV69ejZYvLCzEjRs3hEEOjo6O0NTURGJiolDm+vXryM7OhouLSzOrTkREz5JGL9nNmzcPe/fuRXR0NCQSCfLy8gAA2tra0NHRQWlpKVauXAlfX1/IZDJcuXIFy5Ytg1QqxYgRIwAAurq6mDJlChYvXgypVAo9PT18/PHHsLe3x9ChQ1W6g0RE1D40GkhbtmwBAIwaNUphekhICEJDQ6Guro6srCzs2bMHxcXFkMlkGDx4MLZt24YuXboI5cPCwqCuro6pU6eivLwcbm5u2Lhxo0JfFBERPb8aDaSioqIG53fu3LnWvUp10dLSQnh4OMLDw5WuHBERPT/4LDsiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSgwkIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUWAgERGRKDCQiIhIFBhIREQkCgwkIiISBQYSERGJAgOJiIhEodFAioiIgLu7O0xMTGBpaQl/f39kZWUplJHL5QgLC4OtrS0MDQ3h4+OD3377TaFMUVERAgICYGpqClNTUwQEBKCoqKhFd4aIiNqvRgMpJSUF7777LhISEnDgwAFoaGhg9OjRuHPnjlBm7dq1WL9+PVatWoUTJ05AKpVizJgxuHv3rlBm2rRpyMzMRGxsLGJjY5GZmYn3339fNXtFRETtjkZjBeLj4xX+3rRpE0xNTXHmzBl4e3tDLpcjMjISc+bMwahRowAAkZGRsLa2RmxsLKZOnYrs7GwcP34cR48ehbOzMwDgq6++gre3N3JycmBtba2CXSMiovakyX1IpaWlqK6uhkQiAQDk5uYiLy8Pw4YNE8p07twZrq6uSEtLAwCkp6dDR0cHLi4uQpmBAwdCW1tbKENERM+3Rs+QnrRgwQI4ODgIZzp5eXkAAKlUqlBOKpXixo0bAID8/Hzo6+tDTU1NmK+mpobu3bsjPz+/3m3l5OQ0tXotsizVj+2qGmxX1WC71q1/A/OUbbPmtG1jV8OaFEgLFy7EmTNncPToUairqze5Mk3V3Et5vAyoGmxX1WC7qgbbtXmUaTNVta3Sl+xCQ0MRFxeHAwcOwNzcXJguk8kAAAUFBQrlCwoKYGBgAAAwMDBAYWEh5HK5MF8ul+PWrVtCGSIier4pFUghISFCGPXq1UthnpmZGWQyGRITE4Vp5eXlSE1NFfqMnJ2dUVpaivT0dKFMeno6ysrKFPqViIjo+dXoJbt58+Zh7969iI6OhkQiEfqMtLW1oaOjAzU1NQQFBSEiIgLW1tawsrLC6tWroa2tDT8/PwCAjY0NPD09ERwcjDVr1gAAgoODMXz4cJ5SExERACUCacuWLQAgDOmuERISgtDQUADA7Nmzcf/+fcyfPx9FRUVwcnJCfHw8unTporCejz76CGPHjgUAeHt744svvmixHSEiovat0UBS5mkKampqCA0NFQKqLhKJBN9++22TKkdERM8PPsuOiIhEgYFERESiwEAiIiJRYCAREZEoMJCIiEgUGEhERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSgwkIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREoqBUIJ06dQoTJkxA7969IZFIsHPnToX5QUFBkEgkCi9PT0+FMhUVFZg/fz4sLCxgbGyMCRMm4Pr16y23J0RE1K4pFUhlZWWws7PDypUr0blz5zrLDB06FNnZ2cIrJiZGYX5oaCgOHjyIqKgoHD58GHfv3oW/vz+qqqqefi+IiKjd01CmkJeXF7y8vAAA06dPr7OMlpYWZDJZnfOKi4uxY8cOrF+/Hu7u7gCATZs2wcHBAUlJSfDw8GhO3YmI6BnSYn1IqampsLKygpOTEz744AMUFBQI886dO4fKykoMGzZMmNazZ0/Y2NggLS2tpapARETtmFJnSI3x9PTEyJEjYWZmhitXrmD58uXw9fVFUlIStLS0kJ+fD3V1dejr6yssJ5VKkZ+f3xJVICKidq5FAmns2LHCv+3t7eHo6AgHBwckJCTA19e32evNyclpk2WpfmxX1WC7qgbbtW79G5inbJs1p22tra0bnN8igfQkIyMjGBsb49KlSwAAAwMDVFVVobCwEN27dxfKFRQU4JVXXql3PY1Vvj45OTnNXpbqx3ZVDbararBdm0eZNlNV26rkPqTCwkLcuHFDGOTg6OgITU1NJCYmCmWuX7+O7OxsuLi4qKIKRETUzih1hlRaWiqc7VRXV+PatWvIzMyEnp4e9PT0sHLlSvj6+kImk+HKlStYtmwZpFIpRowYAQDQ1dXFlClTsHjxYkilUujp6eHjjz+Gvb09hg4dqrKdIyKi9kOpQPr1118xcuRI4e+wsDCEhYVh4sSJiIiIQFZWFvbs2YPi4mLIZDIMHjwY27ZtQ5cuXRSWUVdXx9SpU1FeXg43Nzds3LgR6urqLb9XRETU7igVSIMHD0ZRUVG98+Pj4xtdh5aWFsLDwxEeHq505YiI6PnBZ9kREZEoMJCIiEgUVDLsW+wkEt165xUVFbdiTYiIqAbPkIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUWAgERGRKDCQiIhIFJ7LJzUQEVHd2vJJNjxDIiIiUWAgERGRKDCQiIhIFBhIREQkCgwkIiISBQYSERGJglKBdOrUKUyYMAG9e/eGRCLBzp07FebL5XKEhYXB1tYWhoaG8PHxwW+//aZQpqioCAEBATA1NYWpqSkCAgJQVFTUYjtCRETtm1KBVFZWBjs7O6xcuRKdO3euNX/t2rVYv349Vq1ahRMnTkAqlWLMmDG4e/euUGbatGnIzMxEbGwsYmNjkZmZiffff7/l9oSIiNo1pW6M9fLygpeXFwBg+vTpCvPkcjkiIyMxZ84cjBo1CgAQGRkJa2trxMbGYurUqcjOzsbx48dx9OhRODs7AwC++uoreHt7IycnB9bW1i25T0RE1A49dR9Sbm4u8vLyMGzYMGFa586d4erqirS0NABAeno6dHR04OLiIpQZOHAgtLW1hTJERPR8e+pAysvLAwBIpVKF6VKpFPn5+QCA/Px86OvrQ01NTZivpqaG7t27C2WIiOj5Jupn2eXk5Kho2f4q2ebzgO2jGmxX1WC71q3+T8CGPd6ezWnbxrpnnjqQZDIZAKCgoAAmJibC9IKCAhgYGAAADAwMUFhYCLlcLpwlyeVy3Lp1SyjTnMrX52n6pdifVT/296lGTbvqSiT1linmiNQm4/Ha8mraU1Vt+9SX7MzMzCCTyZCYmChMKy8vR2pqqtBn5OzsjNLSUqSnpwtl0tPTUVZWptCvREREzy+lzpBKS0tx6dIlAEB1dTWuXbuGzMxM6OnpwcTEBEFBQYiIiIC1tTWsrKywevVqaGtrw8/PDwBgY2MDT09PBAcHY82aNQCA4OBgDB8+nN9giIgIgJKB9Ouvv2LkyJHC32FhYQgLC8PEiRMRGRmJ2bNn4/79+5g/fz6Kiorg5OSE+Ph4dOnSRVhmy5Yt+OijjzB27FgAgLe3N7744osW3h0iImqvlAqkwYMHN/hUBTU1NYSGhiI0NLTeMhKJBN9++22TK0hERM8HPsuOiIhEQdTDvonokbb8WWmi1sIzJCIiEgUGEhERiQIDiYiIRIGBREREovDMDmpo6DEsgLy1qkFEREriGRIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSgwkIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUWiRQAoLC4NEIlF49erVS5gvl8sRFhYGW1tbGBoawsfHB7/99ltLbJqIiJ4RLXaGZG1tjezsbOF1+vRpYd7atWuxfv16rFq1CidOnIBUKsWYMWNw9+7dlto8ERG1cy0WSBoaGpDJZMKre/fuAB6dHUVGRmLOnDkYNWoU7OzsEBkZidLSUsTGxrbU5omIqJ1rsUC6fPkybG1t0adPH/zzn//E5cuXAQC5ubnIy8vDsGHDhLKdO3eGq6sr0tLSWmrzRETUzrXID/T1798fGzZsgLW1NW7duoXw8HB4eXnhzJkzyMvLAwBIpVKFZaRSKW7cuNHgenNyclqiek3SFttsT9g+qpGTk4P+T7Es1Y1tU7eWONaa07bW1tYNzm+RQHrttdcU/u7fvz8cHR2xa9cuDBgwoNnrbazy9Xmag7C523we5OTksH1U4Gnblf8ndePx2vJq2lNVbauSYd86OjqwtbXFpUuXIJPJAAAFBQUKZQoKCmBgYKCKzRMRUTukkkAqLy9HTk4OZDIZzMzMIJPJkJiYqDA/NTUVLi4uqtg8ERG1Qy1yye6TTz7B66+/jp49ewp9SPfu3cPEiROhpqaGoKAgREREwNraGlZWVli9ejW0tbXh5+fXEpsnIqJnQIsE0t9//41p06ahsLAQ3bt3R//+/fHDDz/A1NQUADB79mzcv38f8+fPR1FREZycnBAfH48uXbq0xOaJiOgZ0CKBtHXr1gbnq6mpITQ0FKGhoS2xOSIiegbxWXZERCQKDCQiIhIFBhIREYkCA4mIiESBgURERKLAQCIiIlFgIBERkSgwkIiISBQYSEREJAoMJCIiEgUGEhERiQIDiYiIRIGBREREosBAIiIiUWAgERGRKDCQiIhIFBhIREQkCgwkIiISBQYSERGJQqsH0pYtW9CnTx/IZDIMGTIEp0+fbu0qEBGRCLVqIMXHx2PBggWYO3cufvrpJzg7O2PcuHG4evVqa1aDiIhEqFUDaf369XjzzTfx9ttvw8bGBuHh4ZDJZNi6dWtrVoOIiERIraioSN4aG3rw4AGMjIwQFRWF0aNHC9PnzZuHrKwsHD58uDWqQUREItVqZ0iFhYWoqqqCVCpVmC6VSpGfn99a1SAiIpHiKDsiIhKFVgskfX19qKuro6CgQGF6QUEBDAwMWqsaREQkUq0WSB07doSjoyMSExMVpicmJsLFxaW1qkFERCKl0ZobmzFjBt5//304OTnBxcUFW7duxc2bNzF16tTWrAYREYlQq/YhvfHGGwgLC0N4eDgGDx6MM2fOYN++fTA1NVVq+VOnTmHChAno3bs3JBIJdu7c2egyFy9exD/+8Q8YGhqid+/eWLVqFeTyVhlY2G40tV1zc3MhkUhqvY4fP95KNW4fIiIi4O7uDhMTE1haWsLf3x9ZWVmNLsdjtmHNaVces8rZvHkzXF1dYWJiAhMTE7z22mtISEhocJmWPF5b9QwJAKZNm4Zp06Y1a9mysjLY2dlh4sSJCAwMbLR8SUkJxowZA1dXV5w4cQI5OTmYMWMGXnjhBcyaNatZdXgWNbVda8TFxeGll14S/tbT01NF9dqtlJQUvPvuu+jXrx/kcjk+//xzjB49GmlpafW2FY/ZxjWnXWvwmG2YsbExli5dCktLS1RXV2P37t2YNGkSkpKSFNqtRksfr612H1JL69GjB7744gtMmjSp3jJRUVFYsmQJ/vjjD3Tu3BkAEB4ejq1btyIrKwtqamqtVd12Q5l2zc3NRd++fZGYmIiXX365FWvXvpWWlsLU1BQ7d+6Et7d3nWV4zDadMu3KY7b5zM3NsXjx4jq7Vlr6eH2mh32np6fjlVdeERoKADw8PHDjxg3k5ua2Yc2eDVOmTIGVlRWGDx+O/fv3t3V1RK+0tBTV1dWQSCT1luEx23TKtGsNHrPKq6qqQlxcHMrKyuDs7FxnmZY+Xp/pQMrPz6/zRtyaedQ8Ojo6+Oyzz7Bt2zbExMTAzc0NU6dOxd69e9u6aqK2YMECODg41PvmBnjMNocy7cpjVnkXL15Ejx49YGBggODgYERHR8Pe3r7Osi19vLZ6HxK1f/r6+grXh19++WXcvn0ba9euhb+/fxvWTLwWLlyIM2fO4OjRo1BXV2/r6jwzlG1XHrPKs7a2RnJyMkpKSrB//34EBQXh0KFDsLOzU/m2n+kzJAMDgzpvxK2ZRy3HyckJly5dautqiFJoaCji4uJw4MABmJubN1iWx6zymtKudeExW7eOHTvCwsICjo6OWLx4MRwcHLBhw4Y6y7b08fpMB5KzszNSU1NRXl4uTEtMTISRkRHMzMzasGbPnvPnz0Mmk7V1NUQnJCRE+NDs1atXo+V5zCqnqe1aFx6zyqmursaDBw/qnNfSx2u7CqTS0lJkZmYiMzMT1dXVuHbtGjIzM4XfU1q6dCl8fX2F8n5+fujcuTOmT5+OrKwsHDhwAGvWrMH06dM5WukxTW3XXbt2ISYmBtnZ2cjJycE333yDLVu2ICAgoK12QZTmzZuHXbt2YfPmzZBIJMjLy0NeXh5KS0uFMjxmm6457cpjVjlLlizB6dOnkZubi4sXL2Lp0qVISUnBuHHjAKj+eG1XfUi//vorRo4cKfwdFhaGsLAwTJw4EZGRkbh58yb++usvYb6uri7+85//YN68eXB3d4dEIsGMGTMwc+bMtqi+aDW1XQFg9erVuHr1KtTV1WFpaYl169bxWvwTtmzZAgAYNWqUwvSQkBCEhoYCAI/ZZmhOuwI8ZpWRl5eHgIAA5Ofno2vXrrC3t0dsbCw8PDwAqP54bbf3IRER0bOlXV2yIyKiZxcDiYiIRIGBREREosBAIiIiUWAgERGRKDCQiIhIFBhIREQkCgwkIiISBQYSERGJwv8DMT846k3wQisAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
      },
-     "metadata": {}
+     "metadata": {},
+     "output_type": "display_data"
     }
    ],
    "source": [
@@ -228,7 +376,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 30,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -239,15 +387,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 31,
    "metadata": {
     "tags": []
    },
    "outputs": [
     {
-     "output_type": "stream",
      "name": "stdout",
-     "text": "              precision    recall  f1-score   support\n\n           0       0.67      0.84      0.74       154\n           1       0.67      0.43      0.52       114\n\n    accuracy                           0.67       268\n   macro avg       0.67      0.64      0.63       268\nweighted avg       0.67      0.67      0.65       268\n\nscore : 0.667910447761194\n"
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.67      0.84      0.74       154\n",
+      "           1       0.67      0.43      0.52       114\n",
+      "\n",
+      "    accuracy                           0.67       268\n",
+      "   macro avg       0.67      0.64      0.63       268\n",
+      "weighted avg       0.67      0.67      0.65       268\n",
+      "\n",
+      "score : 0.667910447761194\n"
+     ]
     }
    ],
    "source": [
@@ -263,17 +422,18 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 32,
    "metadata": {},
    "outputs": [
     {
-     "output_type": "display_data",
      "data": {
-      "text/plain": "&lt;Figure size 432x288 with 1 Axes&gt;",
-      "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n  \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"286.047825pt\" version=\"1.1\" viewBox=\"0 0 411.555 286.047825\" width=\"411.555pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n  <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n   <cc:Work>\n    <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n    <dc:date>2020-11-01T23:23:49.724353</dc:date>\n    <dc:format>image/svg+xml</dc:format>\n    <dc:creator>\n     <cc:Agent>\n      <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n     </cc:Agent>\n    </dc:creator>\n   </cc:Work>\n  </rdf:RDF>\n </metadata>\n <defs>\n  <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n  <g id=\"patch_1\">\n   <path d=\"M 0 286.047825 \nL 411.555 286.047825 \nL 411.555 0 \nL 0 0 \nz\n\" style=\"fill:#f0f0f0;\"/>\n  </g>\n  <g id=\"axes_1\">\n   <g id=\"patch_2\">\n    <path d=\"M 28.515 261.79845 \nL 404.355 261.79845 \nL 404.355 28.51845 \nL 28.515 28.51845 \nz\n\" style=\"fill:#f0f0f0;\"/>\n   </g>\n   <g id=\"matplotlib.axis_1\">\n    <g id=\"xtick_1\">\n     <g id=\"line2d_1\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 42.051553 261.79845 \nL 42.051553 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_2\"/>\n     <g id=\"text_1\">\n      <!-- 0 -->\n      <g transform=\"translate(37.597803 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_2\">\n     <g id=\"line2d_3\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 128.787911 261.79845 \nL 128.787911 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_4\"/>\n     <g id=\"text_2\">\n      <!-- 20 -->\n      <g transform=\"translate(119.880411 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_3\">\n     <g id=\"line2d_5\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 215.524268 261.79845 \nL 215.524268 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_6\"/>\n     <g id=\"text_3\">\n      <!-- 40 -->\n      <g transform=\"translate(206.616768 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_4\">\n     <g id=\"line2d_7\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 302.260626 261.79845 \nL 302.260626 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_8\"/>\n     <g id=\"text_4\">\n      <!-- 60 -->\n      <g transform=\"translate(293.353126 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-54\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"xtick_5\">\n     <g id=\"line2d_9\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 388.996983 261.79845 \nL 388.996983 28.51845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_10\"/>\n     <g id=\"text_5\">\n      <!-- 80 -->\n      <g transform=\"translate(380.089483 275.936262)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 31.78125 34.625 \nQ 24.75 34.625 20.71875 30.859375 \nQ 16.703125 27.09375 16.703125 20.515625 \nQ 16.703125 13.921875 20.71875 10.15625 \nQ 24.75 6.390625 31.78125 6.390625 \nQ 38.8125 6.390625 42.859375 10.171875 \nQ 46.921875 13.96875 46.921875 20.515625 \nQ 46.921875 27.09375 42.890625 30.859375 \nQ 38.875 34.625 31.78125 34.625 \nz\nM 21.921875 38.8125 \nQ 15.578125 40.375 12.03125 44.71875 \nQ 8.5 49.078125 8.5 55.328125 \nQ 8.5 64.0625 14.71875 69.140625 \nQ 20.953125 74.21875 31.78125 74.21875 \nQ 42.671875 74.21875 48.875 69.140625 \nQ 55.078125 64.0625 55.078125 55.328125 \nQ 55.078125 49.078125 51.53125 44.71875 \nQ 48 40.375 41.703125 38.8125 \nQ 48.828125 37.15625 52.796875 32.3125 \nQ 56.78125 27.484375 56.78125 20.515625 \nQ 56.78125 9.90625 50.3125 4.234375 \nQ 43.84375 -1.421875 31.78125 -1.421875 \nQ 19.734375 -1.421875 13.25 4.234375 \nQ 6.78125 9.90625 6.78125 20.515625 \nQ 6.78125 27.484375 10.78125 32.3125 \nQ 14.796875 37.15625 21.921875 38.8125 \nz\nM 18.3125 54.390625 \nQ 18.3125 48.734375 21.84375 45.5625 \nQ 25.390625 42.390625 31.78125 42.390625 \nQ 38.140625 42.390625 41.71875 45.5625 \nQ 45.3125 48.734375 45.3125 54.390625 \nQ 45.3125 60.0625 41.71875 63.234375 \nQ 38.140625 66.40625 31.78125 66.40625 \nQ 25.390625 66.40625 21.84375 63.234375 \nQ 18.3125 60.0625 18.3125 54.390625 \nz\n\" id=\"DejaVuSans-56\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-56\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"matplotlib.axis_2\">\n    <g id=\"ytick_1\">\n     <g id=\"line2d_11\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 28.515 261.79845 \nL 404.355 261.79845 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_12\"/>\n     <g id=\"text_6\">\n      <!-- 0 -->\n      <g transform=\"translate(16.1075 267.117356)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_2\">\n     <g id=\"line2d_13\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 28.515 225.964349 \nL 404.355 225.964349 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_14\"/>\n     <g id=\"text_7\">\n      <!-- 10 -->\n      <g transform=\"translate(7.2 231.283255)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-49\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_3\">\n     <g id=\"line2d_15\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 28.515 190.130247 \nL 404.355 190.130247 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_16\"/>\n     <g id=\"text_8\">\n      <!-- 20 -->\n      <g transform=\"translate(7.2 195.449153)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-50\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_4\">\n     <g id=\"line2d_17\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 28.515 154.296146 \nL 404.355 154.296146 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_18\"/>\n     <g id=\"text_9\">\n      <!-- 30 -->\n      <g transform=\"translate(7.2 159.615052)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-51\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_5\">\n     <g id=\"line2d_19\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 28.515 118.462044 \nL 404.355 118.462044 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_20\"/>\n     <g id=\"text_10\">\n      <!-- 40 -->\n      <g transform=\"translate(7.2 123.780951)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-52\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_6\">\n     <g id=\"line2d_21\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 28.515 82.627943 \nL 404.355 82.627943 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_22\"/>\n     <g id=\"text_11\">\n      <!-- 50 -->\n      <g transform=\"translate(7.2 87.946849)scale(0.14 -0.14)\">\n       <defs>\n        <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n       </defs>\n       <use xlink:href=\"#DejaVuSans-53\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n    <g id=\"ytick_7\">\n     <g id=\"line2d_23\">\n      <path clip-path=\"url(#pb3842f257c)\" d=\"M 28.515 46.793842 \nL 404.355 46.793842 \n\" style=\"fill:none;stroke:#cbcbcb;\"/>\n     </g>\n     <g id=\"line2d_24\"/>\n     <g id=\"text_12\">\n      <!-- 60 -->\n      <g transform=\"translate(7.2 52.112748)scale(0.14 -0.14)\">\n       <use xlink:href=\"#DejaVuSans-54\"/>\n       <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n      </g>\n     </g>\n    </g>\n   </g>\n   <g id=\"patch_3\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 45.598636 261.79845 \nL 52.501116 261.79845 \nL 52.501116 215.214118 \nL 45.598636 215.214118 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_4\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 62.854835 261.79845 \nL 69.757314 261.79845 \nL 69.757314 243.881399 \nL 62.854835 243.881399 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_5\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 80.111033 261.79845 \nL 87.013512 261.79845 \nL 87.013512 222.380938 \nL 80.111033 222.380938 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_6\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 97.367231 261.79845 \nL 104.269711 261.79845 \nL 104.269711 204.463888 \nL 97.367231 204.463888 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_7\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 114.62343 261.79845 \nL 121.525909 261.79845 \nL 121.525909 75.461123 \nL 114.62343 75.461123 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_8\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 131.879628 261.79845 \nL 138.782107 261.79845 \nL 138.782107 39.627021 \nL 131.879628 39.627021 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_9\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 149.135826 261.79845 \nL 156.038306 261.79845 \nL 156.038306 64.710892 \nL 149.135826 64.710892 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_10\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 166.392025 261.79845 \nL 173.294504 261.79845 \nL 173.294504 86.211353 \nL 166.392025 86.211353 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_11\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 183.648223 261.79845 \nL 190.550702 261.79845 \nL 190.550702 125.628865 \nL 183.648223 125.628865 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_12\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 200.904421 261.79845 \nL 207.806901 261.79845 \nL 207.806901 161.462966 \nL 200.904421 161.462966 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_13\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 218.16062 261.79845 \nL 225.063099 261.79845 \nL 225.063099 179.380017 \nL 218.16062 179.380017 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_14\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 235.416818 261.79845 \nL 242.319298 261.79845 \nL 242.319298 179.380017 \nL 235.416818 179.380017 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_15\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 252.673017 261.79845 \nL 259.575496 261.79845 \nL 259.575496 208.047298 \nL 252.673017 208.047298 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_16\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 269.929215 261.79845 \nL 276.831694 261.79845 \nL 276.831694 229.547759 \nL 269.929215 229.547759 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_17\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 287.185413 261.79845 \nL 294.087893 261.79845 \nL 294.087893 233.131169 \nL 287.185413 233.131169 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_18\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 304.441612 261.79845 \nL 311.344091 261.79845 \nL 311.344091 236.714579 \nL 304.441612 236.714579 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_19\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 321.69781 261.79845 \nL 328.600289 261.79845 \nL 328.600289 247.464809 \nL 321.69781 247.464809 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_20\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 338.954008 261.79845 \nL 345.856488 261.79845 \nL 345.856488 243.881399 \nL 338.954008 243.881399 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_21\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 356.210207 261.79845 \nL 363.112686 261.79845 \nL 363.112686 258.21504 \nL 356.210207 258.21504 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_22\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 373.466405 261.79845 \nL 380.368884 261.79845 \nL 380.368884 261.79845 \nL 373.466405 261.79845 \nz\n\" style=\"fill:#ff0000;\"/>\n   </g>\n   <g id=\"patch_23\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 52.501116 261.79845 \nL 59.403595 261.79845 \nL 59.403595 165.046376 \nL 52.501116 165.046376 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_24\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 69.757314 261.79845 \nL 76.659793 261.79845 \nL 76.659793 229.547759 \nL 69.757314 229.547759 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_25\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 87.013512 261.79845 \nL 93.915992 261.79845 \nL 93.915992 247.464809 \nL 87.013512 247.464809 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_26\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 104.269711 261.79845 \nL 111.17219 261.79845 \nL 111.17219 208.047298 \nL 104.269711 208.047298 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_27\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 121.525909 261.79845 \nL 128.428388 261.79845 \nL 128.428388 165.046376 \nL 121.525909 165.046376 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_28\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 138.782107 261.79845 \nL 145.684587 261.79845 \nL 145.684587 132.795685 \nL 138.782107 132.795685 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_29\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 156.038306 261.79845 \nL 162.940785 261.79845 \nL 162.940785 154.296146 \nL 156.038306 154.296146 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_30\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 173.294504 261.79845 \nL 180.196983 261.79845 \nL 180.196983 136.379095 \nL 173.294504 136.379095 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_31\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 190.550702 261.79845 \nL 197.453182 261.79845 \nL 197.453182 136.379095 \nL 190.550702 136.379095 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_32\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 207.806901 261.79845 \nL 214.70938 261.79845 \nL 214.70938 200.880478 \nL 207.806901 200.880478 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_33\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 225.063099 261.79845 \nL 231.965579 261.79845 \nL 231.965579 218.797528 \nL 225.063099 218.797528 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_34\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 242.319298 261.79845 \nL 249.221777 261.79845 \nL 249.221777 218.797528 \nL 242.319298 218.797528 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_35\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 259.575496 261.79845 \nL 266.477975 261.79845 \nL 266.477975 211.630708 \nL 259.575496 211.630708 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_36\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 276.831694 261.79845 \nL 283.734174 261.79845 \nL 283.734174 236.714579 \nL 276.831694 236.714579 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_37\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 294.087893 261.79845 \nL 300.990372 261.79845 \nL 300.990372 243.881399 \nL 294.087893 243.881399 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_38\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 311.344091 261.79845 \nL 318.24657 261.79845 \nL 318.24657 247.464809 \nL 311.344091 247.464809 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_39\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 328.600289 261.79845 \nL 335.502769 261.79845 \nL 335.502769 261.79845 \nL 328.600289 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_40\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 345.856488 261.79845 \nL 352.758967 261.79845 \nL 352.758967 261.79845 \nL 345.856488 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_41\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 363.112686 261.79845 \nL 370.015165 261.79845 \nL 370.015165 261.79845 \nL 363.112686 261.79845 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_42\">\n    <path clip-path=\"url(#pb3842f257c)\" d=\"M 380.368884 261.79845 \nL 387.271364 261.79845 \nL 387.271364 258.21504 \nL 380.368884 258.21504 \nz\n\" style=\"fill:#0000ff;\"/>\n   </g>\n   <g id=\"patch_43\">\n    <path d=\"M 28.515 261.79845 \nL 28.515 28.51845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"patch_44\">\n    <path d=\"M 404.355 261.79845 \nL 404.355 28.51845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"patch_45\">\n    <path d=\"M 28.515 261.79845 \nL 404.355 261.79845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"patch_46\">\n    <path d=\"M 28.515 28.51845 \nL 404.355 28.51845 \n\" style=\"fill:none;stroke:#f0f0f0;stroke-linecap:square;stroke-linejoin:miter;stroke-width:3;\"/>\n   </g>\n   <g id=\"text_13\">\n    <!-- Relative distribution of Age -->\n    <g transform=\"translate(79.518675 22.51845)scale(0.2016 -0.2016)\">\n     <defs>\n      <path d=\"M 44.390625 34.1875 \nQ 47.5625 33.109375 50.5625 29.59375 \nQ 53.5625 26.078125 56.59375 19.921875 \nL 66.609375 0 \nL 56 0 \nL 46.6875 18.703125 \nQ 43.0625 26.03125 39.671875 28.421875 \nQ 36.28125 30.8125 30.421875 30.8125 \nL 19.671875 30.8125 \nL 19.671875 0 \nL 9.8125 0 \nL 9.8125 72.90625 \nL 32.078125 72.90625 \nQ 44.578125 72.90625 50.734375 67.671875 \nQ 56.890625 62.453125 56.890625 51.90625 \nQ 56.890625 45.015625 53.6875 40.46875 \nQ 50.484375 35.9375 44.390625 34.1875 \nz\nM 19.671875 64.796875 \nL 19.671875 38.921875 \nL 32.078125 38.921875 \nQ 39.203125 38.921875 42.84375 42.21875 \nQ 46.484375 45.515625 46.484375 51.90625 \nQ 46.484375 58.296875 42.84375 61.546875 \nQ 39.203125 64.796875 32.078125 64.796875 \nz\n\" id=\"DejaVuSans-82\"/>\n      <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n      <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n      <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n      <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n      <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n      <path d=\"M 2.984375 54.6875 \nL 12.5 54.6875 \nL 29.59375 8.796875 \nL 46.6875 54.6875 \nL 56.203125 54.6875 \nL 35.6875 0 \nL 23.484375 0 \nz\n\" id=\"DejaVuSans-118\"/>\n      <path id=\"DejaVuSans-32\"/>\n      <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n      <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n      <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n      <path d=\"M 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\nM 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 75.984375 \nL 18.109375 75.984375 \nz\n\" id=\"DejaVuSans-98\"/>\n      <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n      <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"/>\n      <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n      <path d=\"M 37.109375 75.984375 \nL 37.109375 68.5 \nL 28.515625 68.5 \nQ 23.6875 68.5 21.796875 66.546875 \nQ 19.921875 64.59375 19.921875 59.515625 \nL 19.921875 54.6875 \nL 34.71875 54.6875 \nL 34.71875 47.703125 \nL 19.921875 47.703125 \nL 19.921875 0 \nL 10.890625 0 \nL 10.890625 47.703125 \nL 2.296875 47.703125 \nL 2.296875 54.6875 \nL 10.890625 54.6875 \nL 10.890625 58.5 \nQ 10.890625 67.625 15.140625 71.796875 \nQ 19.390625 75.984375 28.609375 75.984375 \nz\n\" id=\"DejaVuSans-102\"/>\n      <path d=\"M 34.1875 63.1875 \nL 20.796875 26.90625 \nL 47.609375 26.90625 \nz\nM 28.609375 72.90625 \nL 39.796875 72.90625 \nL 67.578125 0 \nL 57.328125 0 \nL 50.6875 18.703125 \nL 17.828125 18.703125 \nL 11.1875 0 \nL 0.78125 0 \nz\n\" id=\"DejaVuSans-65\"/>\n      <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n     </defs>\n     <use xlink:href=\"#DejaVuSans-82\"/>\n     <use x=\"64.982422\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"126.505859\" xlink:href=\"#DejaVuSans-108\"/>\n     <use x=\"154.289062\" xlink:href=\"#DejaVuSans-97\"/>\n     <use x=\"215.568359\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"254.777344\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"282.560547\" xlink:href=\"#DejaVuSans-118\"/>\n     <use x=\"341.740234\" xlink:href=\"#DejaVuSans-101\"/>\n     <use x=\"403.263672\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"435.050781\" xlink:href=\"#DejaVuSans-100\"/>\n     <use x=\"498.527344\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"526.310547\" xlink:href=\"#DejaVuSans-115\"/>\n     <use x=\"578.410156\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"617.619141\" xlink:href=\"#DejaVuSans-114\"/>\n     <use x=\"658.732422\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"686.515625\" xlink:href=\"#DejaVuSans-98\"/>\n     <use x=\"749.992188\" xlink:href=\"#DejaVuSans-117\"/>\n     <use x=\"813.371094\" xlink:href=\"#DejaVuSans-116\"/>\n     <use x=\"852.580078\" xlink:href=\"#DejaVuSans-105\"/>\n     <use x=\"880.363281\" xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"941.544922\" xlink:href=\"#DejaVuSans-110\"/>\n     <use x=\"1004.923828\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"1036.710938\" xlink:href=\"#DejaVuSans-111\"/>\n     <use x=\"1097.892578\" xlink:href=\"#DejaVuSans-102\"/>\n     <use x=\"1133.097656\" xlink:href=\"#DejaVuSans-32\"/>\n     <use x=\"1164.884766\" xlink:href=\"#DejaVuSans-65\"/>\n     <use x=\"1233.292969\" xlink:href=\"#DejaVuSans-103\"/>\n     <use x=\"1296.769531\" xlink:href=\"#DejaVuSans-101\"/>\n    </g>\n   </g>\n   <g id=\"legend_1\">\n    <g id=\"patch_47\">\n     <path d=\"M 38.315 80.8172 \nL 144.594687 80.8172 \nQ 147.394688 80.8172 147.394688 78.0172 \nL 147.394688 38.31845 \nQ 147.394688 35.51845 144.594687 35.51845 \nL 38.315 35.51845 \nQ 35.515 35.51845 35.515 38.31845 \nL 35.515 78.0172 \nQ 35.515 80.8172 38.315 80.8172 \nz\n\" style=\"fill:#f0f0f0;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;stroke-width:0.5;\"/>\n    </g>\n    <g id=\"patch_48\">\n     <path d=\"M 41.115 51.756262 \nL 69.115 51.756262 \nL 69.115 41.956262 \nL 41.115 41.956262 \nz\n\" style=\"fill:#ff0000;\"/>\n    </g>\n    <g id=\"text_14\">\n     <!-- Dead -->\n     <g transform=\"translate(80.315 51.756262)scale(0.14 -0.14)\">\n      <defs>\n       <path d=\"M 19.671875 64.796875 \nL 19.671875 8.109375 \nL 31.59375 8.109375 \nQ 46.6875 8.109375 53.6875 14.9375 \nQ 60.6875 21.78125 60.6875 36.53125 \nQ 60.6875 51.171875 53.6875 57.984375 \nQ 46.6875 64.796875 31.59375 64.796875 \nz\nM 9.8125 72.90625 \nL 30.078125 72.90625 \nQ 51.265625 72.90625 61.171875 64.09375 \nQ 71.09375 55.28125 71.09375 36.53125 \nQ 71.09375 17.671875 61.125 8.828125 \nQ 51.171875 0 30.078125 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-68\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-68\"/>\n      <use x=\"77.001953\" xlink:href=\"#DejaVuSans-101\"/>\n      <use x=\"138.525391\" xlink:href=\"#DejaVuSans-97\"/>\n      <use x=\"199.804688\" xlink:href=\"#DejaVuSans-100\"/>\n     </g>\n    </g>\n    <g id=\"patch_49\">\n     <path d=\"M 41.115 72.305637 \nL 69.115 72.305637 \nL 69.115 62.505637 \nL 41.115 62.505637 \nz\n\" style=\"fill:#0000ff;\"/>\n    </g>\n    <g id=\"text_15\">\n     <!-- Survived -->\n     <g transform=\"translate(80.315 72.305637)scale(0.14 -0.14)\">\n      <defs>\n       <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n      </defs>\n      <use xlink:href=\"#DejaVuSans-83\"/>\n      <use x=\"63.476562\" xlink:href=\"#DejaVuSans-117\"/>\n      <use x=\"126.855469\" xlink:href=\"#DejaVuSans-114\"/>\n      <use x=\"167.96875\" xlink:href=\"#DejaVuSans-118\"/>\n      <use x=\"227.148438\" xlink:href=\"#DejaVuSans-105\"/>\n      <use x=\"254.931641\" xlink:href=\"#DejaVuSans-118\"/>\n      <use x=\"314.111328\" xlink:href=\"#DejaVuSans-101\"/>\n      <use x=\"375.634766\" xlink:href=\"#DejaVuSans-100\"/>\n     </g>\n    </g>\n   </g>\n  </g>\n </g>\n <defs>\n  <clipPath id=\"pb3842f257c\">\n   <rect height=\"233.28\" width=\"375.84\" x=\"28.515\" y=\"28.51845\"/>\n  </clipPath>\n </defs>\n</svg>\n",
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEeCAYAAABc5biTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1NUlEQVR4nO3de1hU1foH8O8IoojIEI6DKGDKCGLeQEXINDQxokRMRdMsn9QE7QcmhHjyRnomBDypIV5Qs7xLeI7X1ARNFMEslWNe8JCUhkOow8UYLzC/Pzwzx5HbALOFwe/neXiUtfde+92LmXlnr7X23iKlUqkGERGRgJo1dABERNT0MdkQEZHgmGyIiEhwTDZERCQ4JhsiIhIckw0REQmOycZIyOVyiMVinDhxQtD9+Pn5QSwWC7oPQzlx4gTEYjGCgoJ0yoOCgiAWi5Gbm9sgcW3ZsgVisRhbtmzRKe/Ro0eDt62mzeRyeYPGYQg///wzAgIC4OTkBLFYjB49ejR0SFQNJhsDEIvFOj/W1tZwcHCAj48P1qxZg4cPHzZ0iFqaZNJQH8TGwJjbqKoE3NQUFRVh7NixOHXqFN544w1ERETU+pjnzJkDsVgMGxsb5OXlCRQpaZg2dABNSUREBACgrKwMv/32G/bu3YvMzEwcO3YM27Zta+Do9LN69WqUlpY2dBj1smDBAsyaNQt2dnYNsv8333wT/fr1g1QqbZD9V8fd3R2ZmZmwsbFp6FDq5aeffsKff/6JyZMn4x//+Eett1epVNixYwdEIhHKysrwzTff4JNPPhEgUtJgsjGgyMhInd+vXLkCb29vHDx4EGlpaRg4cGADRaY/e3v7hg6h3mxtbWFra9tg+7eysoKVlVWD7b86rVq1QteuXRs6jHrTnIm0a9euTtv/85//xN27dzF9+nRs3rwZX3/9NcLCwtCsGTt7hMKWFZCzszNefvllAI/7l5+Wk5ODjz76CC+99BLatWuHLl26YMKECTh37pze+9i3bx+mTp0KNzc32NnZoUOHDhg0aBBWrVqFsrIynXXFYjFOnjwJAOjVq5e22+/Jvu6nx2y+/fZbiMVihIeHV7r/8vJydOvWDXZ2diguLtZZ9q9//Qv+/v7o1KkT2rVrBzc3NyxcuBBFRUV6Hx8A5OfnY+bMmZDJZLC1tcXAgQMrjIc8qaoxm71792LEiBFwdnZGu3bt4OzsjOHDhyMuLk67Tm3a6Pr161i5ciUGDBgAqVSKd955B0DVYzYa9+/fx+LFi9GzZ0+0a9cOffr0wdKlS/HgwQOd9XJzc6vtEnv6OOVyOd566y0AwLZt23S6djWxVDdmk5OTg+DgYLi6ukIikUAmk+H9999HVlZWhXU1xyiXy3HhwgWMHTsWDg4OaN++PXx9fXH69OlKY67Ov/71L/j5+cHBwQFSqRT9+/fH4sWLdV5XT7dJdHR0hWPUx6ZNmwAAU6dOxciRI3Hjxg18//33Va6fl5eHoKAgdOnSRfsa3Lp1a7XdliqVCitXrsTgwYPRoUMH2NnZ4dVXX8WGDRugVj9/dwnjmc0zYmqq29THjx/HhAkToFKpMHz4cHTp0gV5eXnYu3cvvv/+e2zduhVDhw6tsd5FixahWbNm6Nu3L+zs7FBYWIjjx49j7ty5+Omnn5CYmKhdNyIiAlu3bsXvv/+O6dOna799V/ct3M/PD1ZWVvj222+xZMkSmJmZ6SxPTU1FXl4exo4dC0tLS2357NmzsX79enTo0AFvvvkmxGIxfvzxR3zxxRc4fPgwDh06pLN+Ve7cuQMfHx9cv34dHh4e8PLywq1btxAWFobBgwfXuL3G+vXrMXv2bLRr1w7Dhw+HRCLB7du3ceXKFWzcuBGzZ8+udRt98sknyMjIwPDhw+Hj44PWrVvrFcv777+Pc+fO4a233oKpqSn279+Pv//97zh37hy2bt2q9zE9beDAgfjtt9+wbds2vPTSS/Dz89Muq2nw/Oeff4a/vz+KioowfPhwdO/eHb/++iv27t2LgwcPYvPmzRg2bFiF7c6dO4cVK1bAw8MDkyZNwo0bN7Bnzx74+/vjhx9+gLOzs16xR0VFYdmyZbC2tsaoUaNgZWWF1NRUxMbG4sCBA/juu+/Qpk0bWFlZISIiAllZWThw4ABefvllbY+BvhMErly5gvT0dHh6emq/4G3evBkbN26Ej49PhfXz8/MxbNgw3LhxA56enhgwYADy8/MRFhYGb2/vSvdRXFyMkSNH4uzZs+jZs6f2i8jRo0fx8ccf48yZM0hISNAr3qaCyUZA165dw6lTpwAAnp6e2vLCwkJMnjwZzZs3x/fffw8XFxftsitXrmDo0KGYMWMGzp8/jxYtWlS7j507d+LFF1/UKSsvL8f06dOxc+dOfPjhh+jXrx+Ax918aWlp+P333xEUFARHR8caj6Fly5Z4++23sWHDBhw8eBD+/v46yzVjURMmTNCW7dixA+vXr8ebb76JdevWwdzcXLssJiYGS5YsgVwux9///vca979o0SJcv34dU6dORUxMjLZ8+vTpeO2112rcXmPTpk0wMzPDiRMnKoyl3L59W/v/2rRRVlYWfvjhB73a8UlXr15Fenq69gxy3rx58PPzw4EDB5CUlITRo0fXqj6NV155BcDjv0mPHj0qdOtWRa1WY/r06SgqKsKqVau0H4wAcOzYMQQEBGD69OnIyspCq1atdLY9dOgQ1qxZg8DAQG3Zxo0bMWvWLKxZswbLli2rcf+ZmZlYtmwZ7OzscPToUbRv3x4AsHDhQgQFBWH79u2IiopCbGwsxGIxIiMjsWXLFhw4cAADBw7U+zifjA+A9jg1Sefw4cP4448/Koz1LVy4EDdu3MCMGTOwZMkSbfmMGTOqTDZz587F2bNnsXDhQoSGhmrL79+/j3fffRfbtm3DW2+9hTfeeKNWsRszdqMZkFwuh1wux+LFizFt2jQMGjQI9+7dw//93/+hd+/e2vW2b9+OO3fuICIiQifRAI+73iZNmoRbt27h2LFjNe7z6UQDAM2aNUNwcDAAICUlpV7HBPzvTfn0JIeioiLs378fHTt21H7QAcCqVatgYmKClStX6iQaAPj4449hY2ODnTt31rjfhw8fYteuXbCwsMDf/vY3nWW9evXC2LFj9T6GZs2awdTUtMKZGYA6D5Z/9NFHtU40ABAeHq7TVWlubo5PP/0UALB58+Y6xVIfGRkZuHLlCtzc3HQSDQC8+uqrePPNN3H79m3s37+/wraenp46iQYAJk6cCFNTU/z000967V9zzB9//LE20QCASCRCVFQUzM3NsW3bNoPM6lSpVNi+fTssLCwwcuRIbfk777yjnSjwpAcPHmD37t2wtLSsMIHA1dUV48aNq7CPu3fvYtu2bejZs6dOogGAFi1aYP78+QAefyl7nvDMxoCio6MrlM2bN0/bRaORkZEBALh48WKlfefXrl0D8Pgb8PDhw6vd5507d7BixQocPnwYubm5uHfvns5yQ0zp7Nu3L5ydnfH999/jzz//hEQiAQDs3r0bpaWlGDdunHZgtbS0FBcuXIC1tTVWr15daX1mZmbIy8vDnTt38MILL1S536tXr+Kvv/5C//79K70+5eWXX9a7n37s2LGYO3cuPDw8EBAQAC8vL3h4eNRrIkHfvn3rtJ1mHO9JXl5eEIlEuHDhQp3jqavz588DAAYNGlTp8ldffRV79+7F+fPnMWbMGJ1lT36J0mjevDnatWsHpVJZ7/23a9cOrq6uOHv2LLKzs+Hq6qpXnVXZvXs3lEolxo8fr9ONO27cOCxZsgTffPMNwsPDta/nq1evorS0FP3796+0K9XDw0M7/qNx9uxZPHr0CM2aNav0/f3o0SMAQHZ2dr2Oxdgw2RiQ5s1VWlqKs2fPYtasWViyZAlefPFFjBo1SrvenTt3AKDCt6inPZ04Ktuft7c3cnNz4e7ujnHjxsHa2homJiYoLCzE6tWrcf/+/fod1H+98847WLBgAXbs2IGZM2cC+N+ZzpPfhu/evQu1Wo07d+5UmnyfVFJSUm2y0Uwk0CS3p9VmJlJwcDAkEgnWr1+PxMRErFmzBgDQr18/zJ8/X+fMTF91nQlV2XYtW7aEpaVlrSdPGIJmn1Udj6bbsbLY2rRpU+k2JiYmFSaoCLH/2tIkhqfP4Dp06ABvb28cPXoUR44c0X7J00xOqM1rUPP+PnfuXLWTfUpKSmodvzFjshGAubk5Bg4ciKSkJHh6eiIkJAQvv/yy9k2jeYMeO3as0m+G+vrmm2+Qm5uLiIiICv3WmZmZVZ5Z1EVgYCCioqKwbds2zJw5Ezk5OTh9+jQ8PT3RuXNn7XqaY3N1ddWOV9WVpq4///yz0uX5+fm1qm/MmDEYM2YMioqKcObMGXz33XfYtGkTxowZg7S0NDg5OdWqPpFIVKv1NfLz8ytMMVepVCguLoa1tbW2TPPtuqoP7cLCwjrt/2madq6qPRUKhc56hvbk/is7gzXU/i9fvqydJaeZtVeZjRs3apON5uynNq9BTZzTpk3D0qVL6xVzU8IxGwE5OjoiJCQExcXFOgOLmgH79PT0etWfk5MDABgxYkSFZZrpu08zMTEB8HgSQW3Y2tpiyJAhuHjxIs6fP6+dNTV+/Hid9Vq3bg1XV1dkZ2frDLzXRdeuXdGqVStcvHix0i6Zqo6xJm3atMHQoUMRExODmTNnQqVS6Ux7rWsb6auyuE+dOgW1Wo2ePXtqyzQfvDdu3Kiw/qNHjyrtctPEru9ZBfB4/AtAlbdCOn78OIDKu8wMobr9FxQU4NKlS7CwsIBMJqvXfjQTAzw9PfHuu+9W+mNlZYUjR47g5s2bAB6/Bs3NzXHp0qVKk7umS/xJffv2RbNmzer9/m5qmGwEFhwcDBsbG2zZskU7FjNx4kSIxWLExMQgMzOzwjZqtRrp6ekVrrt4moODA4CKb9Lz589XeVW1ZjD8999/r/WxaGacbdmyBTt27ECrVq0QEBBQYb0ZM2bg4cOHCA4Oxt27dyssLy4uxo8//ljj/po3b44xY8bg3r17OskaeHyM+kwy0Dhy5EilA8yab80tW7bUltWnjfQRExOjkzxLS0uxePFiALqz+iwtLeHi4oKMjAxcvHhRW65Wq/H5559XmoQ0sVe2rCoeHh5wdnbG2bNnKwxaHz9+HHv37oWNjY1gM6cmTpwIAFi2bJn27wE8Ps758+fjr7/+wvjx49G8efM670Nzx4BmzZphzZo1WLlyZaU/EyZM0JkoYGZmhoCAABQXF+vMhgSAX375Bdu3b6+wr7Zt2yIwMBBZWVmQy+XaMZon3bx5E1evXq3z8RgjdqMJzNLSEqGhoZg3bx6WLFmCjRs3wtraGl9//TUmTpwIHx8fDBo0CC4uLmjevDlu3ryJH3/8ETdu3MD169crnT2lMW7cOKxYsQJz585FWloaunTpgv/85z84dOgQ3nrrLSQnJ1fYxtvbG7t370ZISAj8/f1hYWEBKysrTJs2rcZj8fX1hbW1NTZu3IiHDx9WuLZGY8KECTh//jzWrl2L3r17Y+jQoXBwcEBhYSF+++03nDp1Ct7e3npdUzJ//nwcP34c69atw4ULF+Dl5QWFQoHdu3fjtddew8GDB2usAwA++OADmJmZwdPTEw4ODhCJRDh79izS09PRqVMnnZlJ9WkjfTg7O8PT0xMjRozQXmdz/fp1vPHGGxWmPc+aNQsffvghfH19MXLkSLRq1QoZGRm4efMmBg4ciLS0NJ31ZTIZ7O3tkZ6ejqlTp6JLly4wMTGBr68vXnrppUrjEYlESEhIwMiRIzF9+nTs3r1be53Nnj17YGZmhtWrV1eY9mwo/fv3x8cff4xly5bB09MTI0eORJs2bZCamorz58/D1dUV8+bNq9c+NBMDXnvtNe2XtMq8//77WLVqFTZv3ozw8HCYmJhg4cKF+OGHH/Dll1/i7Nmz8PT0RH5+vvY1uH///gp3Hli6dClycnIQHR2NHTt2wMvLC1KpFAqFAteuXcOZM2ewZMmSJnE3B30x2TwDU6ZMwapVq/DPf/4ToaGh6NWrFwYNGoSTJ0/iyy+/xNGjR5GZmQlTU1NIpVL069cPCxYsqLGPun379jh48CAWLlyI06dPIyUlBTKZDHFxcRg8eHClyWbixIm4efMmdu7cifj4eDx8+BD29vZ6fZC2aNECo0ePxrp16wDofgt/2tKlS+Hj44P169cjLS0Nd+/ehZWVFezs7PDBBx9UmNVUFRsbGxw6dAhRUVH47rvvcP78eTg5OSE2NhYODg56J5uFCxciJSUFWVlZOHr0KExNTdGxY0dERETgww8/1BkrqE8b6WPjxo1YunQpdu7cCYVCgfbt2yMyMhKzZs2qMA4UGBgItVqNFStWYPv27WjdujWGDBmCb775psLZHvB4nGfLli1YsGABDh8+jKKiIqjVatjZ2VWZbADAzc0Nx44dQ0xMDI4dO4ajR4/CysoKfn5+mD17tk73nhDmz5+Pnj17Yu3atdi1axfu378PR0dHhIWFISQkRK8LgKvz1VdfAQAmTZpU7Xpdu3aFp6cn0tPTceTIEbz++uto164dDh8+jKioKBw5cgQ///wznJycEBMTAwsLC+zfv7/Ce9XS0hL79u3DN998g127dmHfvn1QqVSQSCRwcHDA/Pnzdb7gPA9ESqXy+btvAhGRAXz22WeIi4vDF198gffff7+hw2nUOGZDRFSDyq5Xu3jxItasWYPmzZvD19e3AaIyLuxGIyKqwbBhw2Bvbw9XV1e0atUK//nPf3D48GE8evQIixcvbpSPk2hs2I1GRFSD2NhYHDx4EL/++iuKiorQunVr9OnTBx9++CFef/31hg7PKDDZEBGR4DhmQ0REgmOyISIiwTHZEBGR4Iwm2Txvt+N+lti2wmC7CodtKxyh2tZokg0RERkvJhsiIhIckw0REQmOyYaIiATX6G5X8+jRo0ofh9yyZUuDPZmQdBmibU1NTWFhYWGgiIioqWlUyebRo0coLi6GWCyucKv1Fi1a6DzgigzHEG1779493L9/Hy1atDBQVETUlDSqbrR79+5Vmmio8WvVqhVUKlVDh0FEjVSjSjYAmGiMFP9uRFSdRtWNRg3P5Oefq1xW1qfPM4yEiJqSRndmQ0RETQ+TTRMRHh4OPz+/hg6DiKhSenWj3bp1CwsXLsSRI0dQUlKCTp06IS4uDgMHDgQAqNVqfP7559i0aROUSiXc3d0RGxuLbt26GSRIK7EYVgapST+FSmWttwkKCsK2bdsAPJ4GLBaL4eLiAn9/f7z//vto3ry5gaMkIjIeNZ7ZKJVKDB8+HGq1Gjt37kRGRgaWLl0KiUSiXWf58uWIj49HdHQ0UlJSIJFIEBAQgOLiYkGDb2xeffVVXLlyBRcuXEBycjJef/11yOVy+Pr6VnrtEBHR86LGZLNixQrY2tpizZo1cHd3R6dOnTB48GA4OzsDeHxWk5CQgNDQUPj7+8PV1RUJCQkoKSlBUlKS4AfQmLRo0QJSqRR2dnbo2bMnZs6ciX379uH8+fNYvnw5AODBgwdYsGABXF1dYWdnB29vbxw9elRbR1lZGWbOnImePXvC1tYWbm5uWL58OcrLy3XW+fTTT+Ho6AhHR0fMmTMHZWVlz/x4iYj0VWOy2b9/P9zd3TF58mQ4OTlh4MCBWLt2LdTqx0+Tzs3NhUKhwJAhQ7TbmJubw8vLCxkZGcJFbiRcXV0xdOhQ7N27FwAwY8YMnDx5EuvWrcOpU6cwfvx4jBs3DllZWQCA8vJytG/fHl999RUyMjIwb948xMXFYfPmzdo6v/zyS3z99df44osvcOTIEZSVlWHXrl0NcnxERPqocczm+vXrWL9+PYKDgxEaGoqsrCxEREQAAKZNmwaFQgEAOt1qmt/z8vKqrLeyZya0bNmy0ivQn+V4DYA6XZxYVlaGsrKySrd1cnLC8ePHcfnyZSQlJeHMmTPo2LEjAGDSpElISUlBYmIioqOjAQCzZ8/Wbuvr64uzZ89i165dGDt2LABg1apVCA4Ohq+vLwBg0aJFOHr0KMrLy+t8YaVmu+puOFNT3UVFRcjPz6/T/psqPndFOGxb4dSlbWUyWbXLa0w25eXl6NOnDxYsWAAA6NWrF3JycpCYmIhp06Zp13v6oj61Wl3thX6VBVZYWNgobklTlxhMTExgYmJS6bYmJiYQiUS4fPky1Go1Bg8erLP8/v37GDRokHbbDRs24Ouvv8bvv/8OlUqFhw8fwt7eXnsPM4VCAU9PT5199e3bFzdv3qxT7CqVSq/talqnTZs2sLe3r/X+m6rs7Owa34BUN2xb4QjVtjUmG6lUqh2f0ejatStu3LihXQ4A+fn52m/rAFBQUFDhbOd5dfnyZXTq1Anl5eUQiURISUmpMDtN80GenJyMyMhIfPbZZ+jfvz/atGmDdevWYd++fQ0ROhGRQdQ4ZjNgwABcu3ZNp+zatWvab7COjo6QSqVITU3VLlepVEhPT4eHh4eBwzU+v/zyC44ePYoRI0agZ8+eUKvVUCgU6Ny5s86PnZ0dACA9PR3u7u6YNm0aevfujc6dO+PXX3/V1mdlZQVbW1v8+OOP2jK1Wo2ffvrpmR8bEZG+ajyzCQ4Oho+PD2JjYzFq1ChcuHABa9euxbx58wA87j4LCgpCXFwcZDIZnJycEBsbCwsLC4wePVrwA2hM7t+/D4VCgfLychQUFOD48eNYtmwZevfujY8++ggWFhYYO3YsgoODsWTJEvTq1Qt3795FWloaHB0dMWLECDg5OWHbtm04cuQIOnfujG+//RanTp2CldX/Rq6mT5+OZcuWwcnJCa6urkhMTIRCodCeZRIRNTY1Jhs3Nzds2bIFUVFRiImJQceOHTF37lxMmTJFu05ISAhKS0sRHh6uvagzOTkZlpaWggbf2Bw7dgzOzs4wMTGBlZUVunXrhoiICEyePBlmZmYAgPj4eMTGxmL+/Pn4448/YG1tDTc3N7zyyisAgMmTJyMrKwtTpkyBWq3GiBEjMGPGDJ3ZaDNnzoRCocBHH30EAAgMDMSYMWNw5cqVZ3/QRER6ECmVSnVDB6FRWFio8w3+SfoOYlPtPdm29bkRZ3V/v+cRB7GFw7YVjlBty3ujERGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJjsmGiIgEx2RDRESCY7IhIiLBMdkQEZHgmGyaAD8/P4SHhwu+nw4dOmDLli2C74eImp4a743WGIjFVniWj1BTKgtrvU1BQQHkcjkOHz4MhUKhvTfarFmz4O3tLUCU/7N582aYmhrFn5KInlP8hDKQd999F6Wlpfjyyy/x4osvoqCgACdPnsSdO3fqXOeDBw+0N/CsjrW1dZ33IQQrsbjKZYVK5TOLg4gaD3ajGYBSqUR6ejoWLlyIwYMHw8HBAW5ubvjoo4/w9ttvAwB69OiBlStX6mz3dPdXjx49IJfLMWPGDDg4OGDq1KkYNmwY/va3v+lsV1RUBFtbW+zdu7dCPYsWLarwJFAA8PHx0T7OG3h8NuTh4QGpVAovLy/Ex8ejvLxcu/w/N2/CNzQUbX180GfSJBxMT69nKxHR84zJxgBat26N1q1b48CBA1CpVPWqa9WqVejatSuOHTuG+fPnY+zYsUhOTtZJBHv27EHLli0xfPjwCtsHBgbi/PnzuHr1qrbs+vXryMzMRGBgIABg06ZN+OyzzzB37lxkZGRg4cKFWL58ORITEwE8fhT4O/PmoVytxtH4eKwKD4f8q69w//79eh0bET2/mGwMwNTUFPHx8di5cyccHR0xbNgwfPrppzpP09SXl5cXQkJC0LlzZ3Tp0gVvv/02CgoKcOLECe06u3btwsiRIyvtYnNxcUGPHj2wc+dOnfWdnJzg5uYGAIiJicGiRYvg7++PTp06wcfHB6GhoVi/fj0AIPXsWVzOzUXi3LnoJZPBs0cPfD5zJh49elTr4yEiAphsDMbf3x+XL1/G9u3b8dprryEzMxOvvfYa4uLialVPn6eeGfPCCy9gyJAh2uRx69YtnDhxAmPHjq2yjrFjxyIpKUn7+65du7TrFxQU4MaNG5g1axY6dOiADh06oHPnzli0aJH28dNXcnNh17Yt7J948me/bt3QrBlfLkRUN/z0MKCWLVvC29sbEREROHz4MN599118/vnnePDgAZo1awa1Wvc5dZWdKVhYWFQoCwwMxN69e6FSqZCUlIQOHTrA09OzyjjGjBmD3377DZmZmTh37hyuXr2qTTaa7rhly5bhxIkTOHHiBI4ePYr09HScPn0aANBonqZHRE0Gk42AnJ2d8ejRI6hUKrRt2xa3bt3SLlOpVDrjKtV54403AACHDh3SnqWIRKIq17e1tcWgQYOwa9cu7Nq1Cx4eHujUqRMAoF27drCzs8Ovv/6Kzp07o3PnznjxxRe1/wcAF0dH/FFQgBv5+do6f7x0SWfciIioNjj12QDu3LmD9957DxMnTkT37t3RunVrnDt3DitWrMDgwYPRpk0bDBo0CJs3b4avry/atm2LuLg4vcdAWrZsiTfffBMxMTH497//jbVr19a4zdixYzFv3jyYmZkhLCxMZ9mcOXPwySefwMrKCj4+PigpKcHly5eRl5eHcG9veLu7o6u9PabJ5fh8xgyU3r+PyFWreC0PEdUZPz0MwMLCAv369cPq1auRk5ODBw8eoH379hg9erR2SvKsWbPw22+/YcKECbCwsMDs2bORl5en9z4CAwOxdetW9OrVC87OzjWuP2LECISFhaGoqAgBAQE6yyZNmoRWrVphxYoViIqKQsuWLdGtWzdMnToVANCsWTNs/ewzfBQbC+/gYNi3a4clQUH4QC6vRasQEf2PSKlUNpou+sLCQlhZVX6nAJVKhZYtWz7jiJ4PT7atyc8/V7le2VOTF56m+fvxos7HsrOzIZPJGjqMJoltKxyh2pZjNkREJDh2ozUhVZ2V1HRGQkQkNJ7ZEBGR4JhsiIhIcDUmG7lcDrFYrPPTtWtX7XK1Wg25XA4XFxfY2trCz88Ply5dEjRoIiIyLnqd2chkMly5ckX7c+rUKe2y5cuXIz4+HtHR0UhJSYFEIkFAQACKi4vrFNDTV9mTceDfjYiqo1eyMTU1hVQq1f60bdsWwOMPmISEBISGhsLf3x+urq5ISEhASUmJzr259GVhYQGlUskPLiP0119/cWo6EVVJr9lo169fR7du3dC8eXP07dsX8+fPR6dOnZCbmwuFQoEhQ4Zo1zU3N4eXlxcyMjIwefLk2gVjagpLS0sUFRVVWFZUVIQ2bdrUqr7njdmZM5WWP/jvbWiq8mTbVlVHTfWYmpqiRYsWekRJRM+jGpNN3759sWrVKshkMhQUFCAmJgY+Pj44ffo0FAoFAEAikehsI5FIarw6Pjs7u9bB1vdZMU1d308+qbT8Rz0eS61p26rq0LceAOhbzbK6/N2N2fN2vM8S21Y4dWnbmi4ErTHZDBs2TOf3vn37onfv3ti6dSv69esHABVuCqlWq6u9UaQ+gT2NVwzXXU3tpm/bGqL9n6e/IV+zwmHbCqfR3EGgdevWcHFxQU5ODqT/fd5J/hN3BwYePzPl6bMdIiJ6ftU62ahUKmRnZ0MqlcLR0RFSqRSpqak6y9PT0+Hh4WHQQImIyHjV2I326aef4vXXX0fHjh21YzZ//fUXxo8fD5FIhKCgIMTFxUEmk8HJyQmxsbGwsLDA6NGjn0X81ETxZp5ETUuNyeaPP/7AlClTcPv2bbRt2xZ9+/bFkSNH4ODgAAAICQlBaWkpwsPDoVQq4e7ujuTkZFhaWgoePBERGYcak82GDRuqXS4SiRAZGYnIyEiDBUVERE0L741GRESCY7IhIiLBMdkQEZHgmGyIiEhwTDZERCQ4JhsiIhIckw0REQmOyYaIiATHZENERIJjsiEiIsEx2RARkeCYbIiISHBMNkREJDgmGyIiEhyTDRERCY7JhoiIBMdkQ0REgmOyISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJjsmGiIgEx2RDRESCq3WyiYuLg1gsRnh4uLZMrVZDLpfDxcUFtra28PPzw6VLlwwaKBERGa9aJZszZ85g06ZN6N69u0758uXLER8fj+joaKSkpEAikSAgIADFxcUGDZaIiIyT3smmsLAQU6dOxcqVKyEWi7XlarUaCQkJCA0Nhb+/P1xdXZGQkICSkhIkJSUJETMRERkZvZONJpkMHjxYpzw3NxcKhQJDhgzRlpmbm8PLywsZGRmGi5SIiIyWqT4rbdq0CTk5OVizZk2FZQqFAgAgkUh0yiUSCfLy8qqsMzs7uzZx1nmb50nfKsr1aTfNOlXVoW89jamOxsCYYjU2bFvh1KVtZTJZtctrTDbZ2dmIiorCwYMHYWZmVuV6IpFI53e1Wl2hrDaBVRZHbbehx2pqN33b1hDt31jqeBb4mhUO21Y4QrVtjd1omZmZuH37Njw9PWFjYwMbGxucPHkSiYmJsLGxwQsvvAAAyM/P19muoKCgwtkOERE9n2o8s/Hz80OfPn10ymbMmIEuXbrg448/hpOTE6RSKVJTU+Hm5gYAUKlUSE9PR1RUlDBRExGRUakx2YjFYp3ZZwDQqlUrWFtbw9XVFQAQFBSEuLg4yGQyODk5ITY2FhYWFhg9erQgQRMRkXHRa4JATUJCQlBaWorw8HAolUq4u7sjOTkZlpaWhqieiIiMXJ2Szf79+3V+F4lEiIyMRGRkpEGCIiKipsUgZzZEjZXVU13AGoVK5TONg+h5xxtxEhGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJjsmGiIgEx6nPpDex2KrKZUpl4TOMhIiMDc9siIhIcEw2REQkOCYbIiISHMdsyOgYYuyI409EzxbPbIiISHBMNkREJDgmGyIiEhyTDRERCY7JhoiIBMdkQ0REgmOyISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJrsZks27dOnh5ecHe3h729vYYNmwYDh06pF2uVqshl8vh4uICW1tb+Pn54dKlS4IGTURExqXGZGNnZ4dFixbh+PHjSE1NxaBBgzBhwgT8+9//BgAsX74c8fHxiI6ORkpKCiQSCQICAlBcXCx48EREZBxqTDZ+fn4YNmwYOnfuDCcnJ8ybNw+tW7fGmTNnoFarkZCQgNDQUPj7+8PV1RUJCQkoKSlBUlLSs4ifiIiMQK3GbMrKyvDtt9/i3r176N+/P3Jzc6FQKDBkyBDtOubm5vDy8kJGRobBgyUiIuOk18PTLl68CB8fH6hUKlhYWGDz5s3o3r27NqFIJBKd9SUSCfLy8gwfLRERGSW9ko1MJsOJEydQWFiIPXv2ICgoCPv27dMuF4lEOuur1eoKZU/Lzs6udbB12eZ50reKcn3aTbNOVXXou31NdVT3hMwzZ37Uqw5946hrPYZ8nfE1Kxy2rXDq0rYymaza5XolGzMzM3Tu3BkA0KdPH/z0009YtWoVwsLCAAD5+fno2LGjdv2CgoIKZzu1Dexp2dnZtd6GHqup3QzRtob42zSlOgC+ZoXEthWOUG1bp+tsysvL8eDBAzg6OkIqlSI1NVW7TKVSIT09HR4eHgYLkoiIjFuNZzYLFy6Ej48POnTooJ1llpaWhp07d0IkEiEoKAhxcXGQyWRwcnJCbGwsLCwsMHr06GcRPxERGYEak41CocC0adOQn5+PNm3aoHv37khKSsLQoUMBACEhISgtLUV4eDiUSiXc3d2RnJwMS0tLwYMnIiLjUGOySUhIqHa5SCRCZGQkIiMjDRYUERE1Lbw3GhERCU6v2WhEzzMrsbjKZYVK5TOLg8iY8cyGiIgEx2RDRESCY7IhIiLBNbkxm+puh6JUFj7DSBoPtgkRNTSe2RARkeCYbIiISHBMNkREJDgmGyIiEhyTDRERCY7JhoiIBMdkQ0REgmOyISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJrsnd9ZmoMTLE0z75xFAyZjyzISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISXI3JZtmyZfD29oa9vT26dOmCwMBA/PLLLzrrqNVqyOVyuLi4wNbWFn5+frh06ZJgQRMRkXGpMdmkpaXhgw8+wKFDh7Bnzx6Ymppi5MiRuHv3rnad5cuXIz4+HtHR0UhJSYFEIkFAQACKi4sFDZ6IiIxDjdfZJCcn6/y+Zs0aODg44PTp0/D19YVarUZCQgJCQ0Ph7+8PAEhISIBMJkNSUhImT54sTORERGQ0aj1mU1JSgvLycoj/e4FZbm4uFAoFhgwZol3H3NwcXl5eyMjIMFigRERkvGqdbObMmYMePXqgf//+AACFQgEAkEgkOutJJBLk5+cbIEQiIjJ2tbpdzdy5c3H69Gl89913MDEx0VkmEol0fler1RXKnpSdnV2bXddim74G3acxqfrIq6ZpE82/danjye0bUx11rac2ddT0mtKnXfV9XRqijqbkeTzmZ6UubSuTyapdrneyiYyMRHJyMvbu3YtOnTppy6VSKQAgPz8fHTt21JYXFBRUONupTWBPy87OrvU29d3n80AmkzWatjXGOqpbV992bSzHbUwM8ZqlygnVtnp1o0VERCApKQl79uxB165ddZY5OjpCKpUiNTVVW6ZSqZCeng4PDw/DRktEREapxjObsLAw7NixA5s3b4ZYLNaO0VhYWKB169YQiUQICgpCXFwcZDIZnJycEBsbCwsLC4wePVrwAyAiosavxmSTmJgIANppzRoRERGIjIwEAISEhKC0tBTh4eFQKpVwd3dHcnIyLC0tBQiZiIiMTY3JRqnHczJEIhEiIyO1yYeIiOhJvDcaEREJjsmGiIgEx2RDRESCY7IhIiLB1eoOAkSkSyy2qnLZmTPPMBCiRo5nNkREJDgmGyIiEhyTDRERCY5jNo2A1X+fDVSZQj0uqiUiaux4ZkNERIJjsiEiIsEx2RARkeA4ZtPIVXcdh1JZ+AwjoaaCY4TUEHhmQ0REgmOyISIiwbEbjYi0quq2ZZct1RfPbIiISHBMNkREJDgmGyIiEpzRjtlUPX1T/SzDICIiPfDMhoiIBMdkQ0REgjPabjSipsIQd4ngnSaoseOZDRERCY7JhoiIBKdXsjl58iTGjRuHbt26QSwWY8uWLTrL1Wo15HI5XFxcYGtrCz8/P1y6dEmQgImIyPjolWzu3bsHV1dXfP755zA3N6+wfPny5YiPj0d0dDRSUlIgkUgQEBCA4uJigwfc2FiJxVX+EBHRY3olGx8fH8yfPx/+/v5o1kx3E7VajYSEBISGhsLf3x+urq5ISEhASUkJkpKSBAmaiIiMS73HbHJzc6FQKDBkyBBtmbm5Oby8vJCRkVHf6omIqAmo99RnhUIBAJBIJDrlEokEeXl5VW6XnZ1d6309uU3fWm9dt33WpLo49N1fXY6lsvrr0yaafw0RS2Opo671GKKOp+tqam3SGDTGmJqKurStTCardrnBrrMRiUQ6v6vV6gplT6opsKdlZ2fXepv67rO+hN6fIeqXyWSNpm2bUh2GqquxHM+zfu/UxBCvWaqcUG1b7240qVQKAMjPz9cpLygoqHC2Q0REz6d6JxtHR0dIpVKkpqZqy1QqFdLT0+Hh4VHf6omIqAnQqxutpKQEOTk5AIDy8nLcuHEDFy5cgLW1Nezt7REUFIS4uDjIZDI4OTkhNjYWFhYWGD16tKDBC4m3/yCqWnVT+wuVymcWBxkPvZLNzz//jLfeekv7u1wuh1wux/jx45GQkICQkBCUlpYiPDwcSqUS7u7uSE5OhqWlpWCBExGR8dAr2bzyyitQVvNtRSQSITIyEpGRkYaKi4iImhDeG42IiATHRwwQUYPguM/zhWc2REQkOCYbIiISHLvRiMignuVlA+yKMx48syEiIsEx2RARkeCYbIiISHBMNkREJDgmGyIiEhyTDRERCe65nvpc3bRJQP2swiCipxjjXdc5Dbt6PLMhIiLBMdkQEZHgmGyIiEhwz/WYjdCMsd+ZqKmozfuP4y3C45kNEREJjsmGiIgEx2RDRESCY7IhIiLBMdkQEZHgmGyIiEhwTDZERCQ4JhsiIhIckw0REQnOoMkmMTERPXv2hFQqxeDBg3Hq1ClDVk9EREbKYLerSU5Oxpw5cxAXF4cBAwYgMTERY8aMwenTp2Fvb2+o3RARNVlC3zanIW+hZbAzm/j4eLzzzjt477334OzsjJiYGEilUmzYsMFQuyAiIiMlUiqV9X5K2IMHD9C+fXusX78eI0eO1JaHhYXhl19+wYEDB+q7CyIiMmIGObO5ffs2ysrKIJFIdMolEgny8/MNsQsiIjJiBp0gIBKJdH5Xq9UVyoiI6PljkGRjY2MDExOTCmcxBQUFFc52iIjo+WOQZGNmZobevXsjNTVVpzw1NRUeHh6G2AURERkxg019njFjBj788EO4u7vDw8MDGzZswK1btzB58mRD7YKIiIyUwcZsRo0aBblcjpiYGLzyyis4ffo0du7cCQcHh3rVywtF62/ZsmXw9vaGvb09unTpgsDAQPzyyy8666jVasjlcri4uMDW1hZ+fn64dOlSA0VsnOLi4iAWixEeHq4tY7vW3a1btzB9+nR06dIFUqkUHh4eSEtL0y5n29ZNWVkZFi9erP1c7dmzJxYvXoxHjx5p1xGibQ06QWDKlCnIyspCfn4+jh8/jpdffrle9WkuFJ09ezZ++OEH9O/fH2PGjMHvv/9uoIifD2lpafjggw9w6NAh7NmzB6amphg5ciTu3r2rXWf58uWIj49HdHQ0UlJSIJFIEBAQgOLi4gaM3HicOXMGmzZtQvfu3XXK2a51o1QqMXz4cKjVauzcuRMZGRlYunSpzhgw27ZuvvjiCyQmJiI6OhqZmZn4/PPPsW7dOixbtky7jhBta5DrbIQydOhQdO/eHStWrNCWubm5wd/fHwsWLGjAyIxbSUkJHBwcsGXLFvj6+kKtVsPFxQVTp05FWFgYAKC0tBQymQyfffYZu0JrUFhYiMGDB2P58uVYunQpXF1dERMTw3ath6ioKJw8eRKHDh2qdDnbtu4CAwNhbW2N1atXa8umT5+Ou3fvYseOHYK1baO9EeeDBw9w7tw5DBkyRKd8yJAhyMjIaKComoaSkhKUl5dD/N9bY+Tm5kKhUOi0tbm5Oby8vNjWeggNDYW/vz8GDx6sU852rbv9+/fD3d0dkydPhpOTEwYOHIi1a9dCrX783ZhtW3cDBgxAWloarl69CgC4fPkyTpw4gWHDhgEQrm0NNkHA0HihqHDmzJmDHj16oH///gAAhUIBAJW2dV5e3jOPz5hs2rQJOTk5WLNmTYVlbNe6u379OtavX4/g4GCEhoYiKysLERERAIBp06axbeshNDQUJSUl8PDwgImJCR49eoSwsDBMmTIFgHCv20abbDR4oahhzZ07F6dPn8Z3330HExMTnWVs69rJzs5GVFQUDh48CDMzsyrXY7vWXnl5Ofr06aPtLu/VqxdycnKQmJiIadOmaddj29ZecnIytm/fjsTERLi4uCArKwtz5syBg4MDJk2apF3P0G3baLvReKGo4UVGRuLbb7/Fnj170KlTJ225VCoFALZ1LWVmZuL27dvw9PSEjY0NbGxscPLkSSQmJsLGxgYvvPACALZrXUilUjg7O+uUde3aFTdu3NAuB9i2dTF//nzMnDkTb7/9Nrp3745x48ZhxowZ+Mc//gFAuLZttMmGF4oaVkREBJKSkrBnzx507dpVZ5mjoyOkUqlOW6tUKqSnp7Otq+Hn54dTp07hxIkT2p8+ffrg7bffxokTJ+Dk5MR2raMBAwbg2rVrOmXXrl3TPq6Er9m6++uvvyr0apiYmKC8vByAcG3bqLvReKGoYYSFhWHHjh3YvHkzxGKxtk/WwsICrVu3hkgkQlBQEOLi4iCTyeDk5ITY2FhYWFhg9OjRDRx94yUWi7WTLDRatWoFa2truLq6AgDbtY6Cg4Ph4+OD2NhYjBo1ChcuXMDatWsxb948AOBrth5ef/11fPHFF3B0dISLiwsuXLiA+Ph4jBs3DoBwbduok82oUaNw584dxMTEQKFQoFu3bga5UPR5k5iYCADw9/fXKY+IiEBkZCQAICQkBKWlpQgPD4dSqYS7uzuSk5NhaWn5zONtStiudePm5oYtW7YgKioKMTEx6NixI+bOnasdxAbYtnW1dOlSLFmyBLNnz0ZBQQGkUinee+89fPLJJ9p1hGjbRn2dDRERNQ2NdsyGiIiaDiYbIiISHJMNEREJjsmGiIgEx2RDRESCY7IhIiLBMdkQEZHgmGyIiEhwTDZERCS4/wfPdDZaAMp2JAAAAABJRU5ErkJggg==\n"
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEeCAYAAABc5biTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1Q0lEQVR4nO3dd1hTZ98H8C+CMypBDMHBUIki1omKRYvFgVpUHLjqqlfVAuorViliq1WsL1KQFlvEga0DrZOn4kQrVAER9bFFrQvrI9UWI46AKDgg7x8+yWtkJEAOEPx+rour9Yz7/M6d8cs9zjlGCoVCCSIiIgHVquoAiIio5mOyISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJONgQgKCoJYLEZiYqKgx3F3d4dYLBb0GPqSmJgIsViMoKAgjeVVfQ4lvVZisRgdO3asoqhe2bZtG8RiMbZt21alcehDQkICBg8eDFtbW4jFYri7u1d1SFQKJhs9EIvFGn9mZmawtraGm5sb1q1bhxcvXlR1iGqqL+KMjIyqDqXa6tixo8Ek3DepksmbCbimycjIwIQJE3D58mWMGTMG/v7++PDDD8tUxsSJEyEWi2Fra4v8/HyBIiUVk6oOoCbx9/cHABQUFOCvv/7CgQMHcObMGfz666/46aefqjg63axduxZ5eXlVHUaFVPU5zJw5E6NHj0bLli2rLIaSDB06FD169IBUKq3qUCrkxIkTyM/Ph7+/P+bNm1fm/TMzMxEXFwcjIyMoFAr8/PPPGD9+vACRkgqTjR4FBARo/PvGjRvo27cvDh8+jKSkJPTp06eKItOdlZVVVYdQYVV9Dubm5jA3N6/SGEpiamoKU1PTqg6jwjIzMwEAFhYW5dp/69atePnyJebNm4dvvvkGmzdvZrIRGLvRBGRnZ4fevXsDAH777bci62/evIk5c+bgnXfegYWFBdq0aYOJEyfi999/1/kYBw4cwMyZM+Ho6IjmzZujefPmcHFxwZo1a1BQUKCxrVgsRnJyMgCgc+fO6m6/18cR3hzv2Lt3L8RiMfz8/Io9/suXL9GuXTu0aNECubm5Guv27dsHDw8P2NrawsLCAt26dcPSpUuRk5Oj8/kBwL179zB79mzIZDJYWlqiT58+2L59e4nbFzdmo1Qq8dNPP2HQoEGws7ODVCqFg4MDhg0bhs2bNwN41TUjFotx+/ZtAJrdo6+PB6i62Z49e4agoCB069YNEokECxcuBKB9fE2hUGD+/Pmwt7eHVCpFr169sGHDBiiVmneOKmlMqqTz9Pb2xqxZswAAwcHBGvGrYiltzObChQv46KOPIJPJIJFI0KFDB8yePRu3bt0qsq3qHLdt24aTJ0/C3d0dLVu2hJWVFcaOHYtr164VG3NJlEoltmzZggEDBqBly5Zo1qwZ3nvvPXz33Xca3dBv1smsWbOKnKM2hYWF2Lp1Kxo0aIBPP/0U7777LlJSUkqN+caNG5g8eTJsbGzQvHlzuLm5IS4urtT6lMvlWLhwIbp16wapVAobGxuMHDkSJ06cKFPd1BRs2QhM9QViYqJZ1SdOnMDEiRORn5+PQYMGoU2bNsjMzMT+/fvxyy+/YPv27ejfv7/W8pctW4ZatWqpk01OTg5OnjyJRYsW4fz584iKilJv6+/vj+3bt+P27dvw8vJS/8It7Zeuu7s7TE1NsXfvXqxYsQJ16tTRWH/8+HHI5XJMmDABDRs2VC+fP38+Nm7ciBYtWmDo0KEQi8U4d+4cvv32Wxw9ehRxcXFo1KiR1vN78OAB3NzccOvWLTg5OcHZ2Rl3797F/Pnz8f7772vdX2X58uUICwuDtbU1PDw8YGpqCrlcjkuXLmHHjh2YOnUqTE1N4e/vj8jISOTk5Ki7RQHA2tq6SJlTpkxBWloa+vfvj6FDh8LGxkZrHC9evMDIkSORk5MDT09PPHv2DPv27YOfnx9u3LiB4OBgnc/pTe7u7sjOzsahQ4fQu3dvjZZ0cfG/7tixY5g0aRIKCgowbNgwtGrVCn/88Qeio6Nx4MABxMbGolOnTkX2i4uLw6FDhzBgwABMmzYN165dw9GjR3H+/Hmkpqbq3MLz8vLCzp070bx5c3z44YeoXbs2jhw5gsWLFyMhIQG7du2CiYkJrK2t4e/vj6SkJCQnJ+ODDz5Q/1jSdo4qv/zyC27fvo1x48ahUaNGmDhxIlJSUrBp06ZiE/v169fh5uYGhUIBNzc3vPPOO7h16xYmTZqEgQMHFnuMP/74AyNHjkRWVhb69euHDz74AA8fPsTBgwcxYsQIrF69GpMnT9Yp3pqCyUZA165dU7ck3n33XfXy7OxsTJs2DbVr18Yvv/wCe3t7jX369++PWbNmIS0tDXXr1i31GLt27UKrVq00lhUWFsLHxwc7duzAJ598gh49egB41c2XlJSE27dvw9vbW6cvx3r16mH06NH44YcfEBcXh2HDhmmsV41FvT44u3PnTmzcuBFDhw7Fhg0bUL9+ffW6kJAQrFixAitXrsSKFSu0Hj8wMBC3bt3CjBkzEBISol7u5eWFAQMGaN1f5ccff0SzZs2QkpICkUikse7BgwcAXrVkAgICsH37duTk5BTpFn3T7du3kZycXKYus7t378LW1hanTp1Sv7YLFy6Eq6sr1q1bh1GjRsHJyUnn8l43dOhQdbLp06eP1vhVnjx5Ai8vL7x48QI///wzXFxc1Ou2bNmC//mf/4GXlxeSk5NhZGSkse/BgwcRExODvn37qpctW7YM33zzDaKjozF37lytx4+JicHOnTvRoUMHHD58GI0bNwYAfPnll/D09ER8fDwiIyMxZ84c2NjYICAgAEFBQUhOToa7uzsmTpyo03mqbNq0CQDU+40YMQL+/v7YsWMHli5dWuQzt2DBAigUCgQHB+OTTz5RLz927BjGjBlTpPyCggJMnToV2dnZ2L9/v0bSv3v3Lvr374/PPvsMgwcPhkQiKVPshozdaHoUFBSEoKAgfPXVV5g5cybef/99PH36FHPmzEGXLl3U2+3YsQMPHz6Ev7+/RqIBgHbt2mHKlCm4e/euTs3tNxMNANSqVQteXl4AgPj4+IqdFP4/kbzZdaVQKHD48GHY2NhofKDWrFkDY2NjfPfddxqJBgA+/fRTmJubY9euXVqP++LFC+zevRsikQiff/65xrrOnTtj7NixZTqP2rVrF2lhAij3+Mrnn39ern2XLFmi8YVmbm6OTz/9FACqZErywYMH8eDBAwwfPlwj0QCvWm+dO3fG5cuXcfbs2SL7jh49WiPRAMDUqVMBAP/+9791Ov6WLVsAvEouqkQDAHXq1MH//u//AoC6q7OiVBMDrK2t8d577wEAGjZsCA8PDzx69Aj79u3T2P7OnTs4efIkbGxsMH36dI11AwcOLLZ1ffToUdy4cQMff/xxkXFaS0tLzJkzB3l5eUWOVdOxZaNHxXWBfPHFF1iwYIHGstTUVACvmtrFNdtv3LgB4FUrx83NrdRjPnz4EKtXr8bRo0eRkZGBJ0+eaKxXDaRWRPfu3dGuXTv88ssvuH//Ppo2bQrg1XjOs2fPMH78ePUv3qdPn+LChQswMzPD2rVriy2vTp06yMzMxMOHD9GkSZMSj3v9+nU8ffoUPXv2LHYqcu/evXX+ch4zZgzWr1+Pnj17YsSIEXj33Xfh5OQEMzMznfYvjqOjY5n3MTExKbblohrbu3DhQrnjKa+0tDQAKJJoVN5//32kpaUhLS0NPXv21Fj3+o8oFdUsPIVCUabjq778X/fOO+9AIpHgxo0byM3N1eiqLY+tW7eioKAAEyZM0GilTZw4Edu3b8emTZs0fsRcvHgRANCjRw8YGxsXKa9Xr1749ddfNZapPt937twp9vN98+ZNACjzuJahY7LRI9WH6+nTpzh//jzmzZuHFStWwNbWFp6enurtHj58CODVG780byaO4o7n6uqKjIwMODo6Yvz48TAzM4OxsTGys7Oxdu1aPHv2rGIn9V8ffvghvvzyS+zevRve3t4AXnWhGRkZYcKECRoxKZVKPHz4UOv4Q25ubqnJRjWRoKSuhrLMRAoKCkLr1q2xfft2rF69GuHh4ahVqxb69u2LwMDAcl1sWZ7pw+bm5sV+aanOsayTJ/RBdcyS6lN1ntnZ2UXWFTfep2o9vjlBpbTjN27cuEgr+PXjZ2VlIScnp0LJprCwEFu2bCnyngUAZ2dntGrVCqdOnUJ6ejpkMpk6NqBs70HV5zs2NhaxsbElxqPt813TMNkIoEGDBujTpw/27NmDd999F76+vujTpw8sLS0BQN1V8Ouvvxb7y1BXW7duRUZGBvz9/Yv0z585c6bElkV5jBs3DoGBgdi+fTu8vb1x/fp1nDt3Dr1794atra16O9W5OTg44NSpUxU6pqqsrKysYtffu3dP57KMjY3h5eUFLy8vPHz4EKdPn0ZsbCx27tyJkSNH4syZM6UmvuK8OX6hiwcPHqCgoKBIwlGd4+vdSLVqverlLulLu7gv//JQHbOk+pTL5UVi06fGjRvj0aNHyMvLKzbh6Ov4x44dw507dwAU3yJT2bRpk3o8UTWJpSzvQVWcW7ZswfDhwysSco3CMRsB2djYYO7cucjNzVX3PQNQD9inpKRUqHxVc7y4N7RqYsKbVF9yhYWFZTqWpaUl+vXrh4sXL+LSpUvFTgwAXvV/Ozg4ID09XT3wXl5t27ZFgwYN8McffxTbJVPSOWrTpEkTfPDBB1i7di1Gjx6N+/fva7wWqjrS9Zd5Wbx8+VLdzfI61bm8PuNL1XWo+oJ8XXZ2Nv78888iy8sTe+fOnQGgxKnDJ0+eBFD6F3RFqI6flJRUZN3ly5eRlZUFOzu7CnehqSYGDBw4EJMnTy72z9jYGDt27FD3CKhavGfPni22Tk+fPl1kmb4+3zUNk43AfHx8YG5uju3bt6vHYiZNmgSxWIyQkBCcOXOmyD5KpRIpKSl4/vx5qWWrpnq++SFNS0vDN998U+w+ql/vqmtJykI1eyc6Ohq7du2CSCSCh4dHke1mzZqFFy9ewMfHB48ePSqy/vHjxzh37pzW49WuXRtjxozBkydPisxcS0tL02mSAQA8e/as2A++UqlU/2Jt0KCBenlF6kgXy5cv1+jefPDgAcLCwgBAY2ZV27Zt0bhxYxw6dEj96x54lbACAgKKvUuCKvbiElRJ3N3d0aRJE+zbt69IAt+2bRt+++03tG/fXv0lqm+qKcCBgYEa12q9ePFCPTFkypQpFTrGP//8g6NHj6Jx48bYtGkTvvvuu2L/BgwYgAcPHmD//v0AXl0g3KdPH2RkZGhcRgC8mkL95ngNAHzwwQdo3bo1fvzxRxw6dKjYeNLS0tTdbW8LdqMJrFGjRvD19cXixYuxYsUK/PjjjzAzM8OWLVswadIkuLm5wcXFBfb29qhduzb+/vtvnDt3Dnfu3MGtW7eKXNfyuvHjx2P16tUICAhAYmIi2rRpgz///FM9RTkmJqbIPq6urvj5558xd+5cDB8+HA0bNoSpqSlmzpyp9VyGDBkCMzMzbNy4ES9evChybY3KxIkTkZaWhvXr16NLly7o378/rK2tkZ2djb/++gunTp2Cq6trqRdmqixZsgQnTpzAhg0bcOHCBTg7O0Mul+Nf//oXBgwYgMOHD2stIy8vD0OGDIGtrS26du0KKysrvHjxAklJSbh48SJ69OihMTjt6uqK8+fPY/LkyXBzc0O9evVgZWWllyvMLS0tkZeXB2dnZwwZMgTPnj1DbGws5HI5PvnkE43JA7Vr14aPjw9WrlwJFxcXDB06FEZGRkhMTIRSqcQ777yDS5cuaZTfs2dPiEQixMTEoHbt2rCysoKRkRHGjRtX4nUoIpEIa9aswZQpUzBixAgMHz4ctra2uHTpEo4ePQpTU1NERkaWq9tQF6NHj8aRI0ewe/du9OrVC+7u7urrbFR34fDx8anQMVQTAzw9PYtMfX/dlClTEBcXh02bNqnHWUNDQzFo0CD4+/vj+PHj6NixI27duoXY2Fh88MEHOHTokLrLE3j1ukVHR2PUqFH48MMP0b17d3Tu3BkikQh///03Lly4gPT0dJw8ebLMXbeGjMmmEkyfPh1r1qzBzz//DF9fX3Tu3BkuLi5ITk7G999/j+PHj+PMmTMwMTGBVCpFz549sXTpUq191M2aNcPhw4exdOlSnD59GvHx8ZDJZFi1ahX69u1bbLKZPHky7ty5gz179mDNmjV48eIFrKysdEo2devWhaenJzZs2ACgaBfa677++mu4ublh48aNSEpKwqNHj2BqaormzZtj+vTpGhMmSmNubo64uDgEBgbiyJEjSEtLg52dHUJDQ2Ftba1TshGJRAgMDERiYiLOnj2Lw4cPo379+rCxscFXX32FadOmaUyJnj9/PnJycnD48GGEh4fj5cuX6N27t16STe3atfHzzz8jMDAQe/bswcOHD9GqVSvMnz8fM2bMKLK9v78/RCIRfvzxR2zZsgVNmjSBu7s7Fi9ejEmTJhXZXiwWIzo6GsHBwfjXv/6lbin06tWr1IseBw8ejKNHjyIsLAwnTpzAvn37IJFIMGHCBHz22Wca43JCWLduHZydnbF161Zs3boVhYWFaNOmDQIDA+Hl5VXslHVdqe4YAGhvIQ0aNAiWlpZISkrCn3/+iTZt2sDe3h7Hjh1DYGAgTp48iaSkJHTo0AHR0dG4fv06Dh06VOQCZQcHByQnJyMyMhKHDh3CTz/9BKVSCalUCnt7e8yZM0c9CeFtYaRQKJTaNyMiojfNmDEDu3fvxtmzZ9+65FFWHLMhIiqFUqnE3bt3iyw/ceIEYmJiYG9vz0SjA3ajERGVoqCgAB06dICLiwtkMhlMTExw9epVJCQkoE6dOhq3UaKSsRuNiKgUSqUS/v7+OHnyJP755x88ffoU5ubmcHZ2Vo/BknZMNkREJDiO2RARkeCYbIiISHBMNkREJDiDSTbp6elVHUKNxboVButVOKxb4QhVtwaTbIiIyHAx2RARkeCYbIiISHBMNkREJLhqd7ualy9fFvu41Hr16untyYSkSR91a2JiUuqt24no7Vatks3Lly/x+PFjiMXiIs/OqFu3LurVq1dFkdVs+qjbJ0+e4NmzZ6hbt66eoiKimqRadaM9efKk2ERD1V+DBg2Qn59f1WEQUTVVrZINACYaA8XXjYhKU6260ajqGf/2W4nrCrp2rcRIiKgmqXYtGyIiqnmYbGoIPz8/uLu7V3UYRETF0qkb7e7du1i6dCmOHTuG3Nxc2NraYtWqVejTpw+AVw8XWrlyJTZv3gyFQgFHR0eEhoaiffv2egnSVCyGqV5K0k22QlHmfby9vfHTTz8BeDUNWCwWw97eHh4eHvjoo49Qu3ZtPUdJRGQ4tLZsFAoFBg0aBKVSiV27diE1NRVff/01JBKJepvw8HBEREQgODgY8fHxkEgkGDlyJB4/fixo8NXN+++/j2vXruHChQuIiYnB4MGDERQUhCFDhhR77RAR0dtCa7JZvXo1LC0tsW7dOjg6OsLW1hZ9+/ZFu3btALxq1URGRsLX1xceHh5wcHBAZGQkcnNzsWfPHsFPoDqpW7cupFIpmjdvjk6dOmH27Nk4cOAA0tLSEB4eDgB4/vw5vvzySzg4OKBZs2ZwdXXF8ePH1WUUFBRg9uzZ6NSpEywtLdGtWzeEh4ejsLBQY5svvvgCNjY2sLGxwcKFC1FQUFDp50tEpCutyebgwYNwdHTEtGnTYGdnhz59+mD9+vVQKl89TTojIwNyuRz9+vVT71O/fn04OzsjNTVVuMgNhIODA/r374/9+/cDAGbNmoXk5GRs2LABKSkpmDBhAsaPH4+LFy8CAAoLC9GsWTNs2rQJqampWLx4MVatWoXo6Gh1md9//z22bNmCb7/9FseOHUNBQQF2795dJedHRKQLrWM2t27dwsaNG+Hj4wNfX19cvHgR/v7+AICZM2dCLpcDgEa3murfmZmZJZZb3DMT6tWrV+wV6JU5XgOgXBcnFhQUoKCgoNh97ezscOLECVy9ehV79uzB2bNn0bJlSwDAlClTEB8fj6ioKAQHBwMA5s+fr953yJAh+Pe//43du3dj7NixAIA1a9bAx8cHQ4YMAQAsW7YMx48fR2FhYbkvrFTtV9oNZ7SVnZOTg3v37pXr+DUVn7siHNatcMpTtzKZrNT1WpNNYWEhunbtii+//BIA0LlzZ9y8eRNRUVGYOXNmmQMqLbDs7OxqcUua8sRgbGwMY2PjYvc1NjaGkZERrl69CqVSib59+2qsf/bsGVxcXNT7/vDDD9iyZQtu376N/Px8vHjxAlZWVup7mMnlcrz77rsax+revTv+/vvvcsWen5+v037atmncuDGsrKzKfPyaKj09XesHkMqHdSscoepWa7KRSqXq8RmVtm3b4s6dO+r1AJCVlaXxRZOVlQULCwt9xmqwrl69CltbWxQWFsLIyAjx8fFFZqepvshjYmIQEBCA5cuXo2fPnmjcuDE2bNiAAwcOVEXoRER6oXXMplevXrhx44bGshs3bqgTi42NDaRSKRISEtTr8/PzkZKSAicnJz2Ha3guX76M48ePY/jw4ejUqROUSiXkcjlat26t8de8eXMAQEpKChwdHTFz5kx06dIFrVu3xn/+8x91eaamprC0tMS5c+fUy5RKJc6fP1/p50ZEpCutLRsfHx+4ubkhNDQUo0aNwoULF7B+/XosXrwYwKt7Ynl7eyMsLAwymQx2dnYIDQ2FSCSCp6en4CdQnTx79gxyuRyFhYW4f/8+Tpw4gbCwMHTp0gVz5syBSCTC2LFj4ePjgxUrVqBz58549OgRkpKSYGNjg+HDh8POzg4//fQTjh07htatW2Pv3r04deoUTE3/f+TKy8sLYWFhsLOzg4ODA6KioiCXy9WtTCKi6kZrsunWrRu2bduGwMBAhISEoGXLlli0aBGmT5+u3mbu3LnIy8uDn5+f+qLOmJgYNGrUSNDgq5tff/0V7dq1g7GxMUxNTdG+fXssXLgQH330EerUqQMAiIiIQGhoKJYsWYJ//vkHZmZm6NatG9577z0AwLRp03Dx4kVMnz4dSqUSw4cPx6xZszRmo82ePRtyuRxz5swBAIwbNw5jxozBtWvXKv+kiYh0YKRQKJRVHYRKdna2xi/41+k6iE1l93rdVuRGnKW9fm8jDmILh3UrHKHqlvdGIyIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJjsmGiIgEx2RDRESCY7IhIiLBMdnUAO7u7vDz8xP8OC1atMC2bdsEPw4R1Txa741WHYjFpqjMR6gpFNll3uf+/fsICgrC0aNHIZfL1fdGmzdvHlxdXQWI8v9FR0fDxMQgXkoiekvxG0pPJk+ejLy8PHz//fdo1aoV7t+/j+TkZDx8+LDcZT5//lx9A8/SmJmZlfsYQjAVi0tcl61QVFocRFR9sBtNDxQKBVJSUrB06VL07dsX1tbW6NatG+bMmYPRo0cDADp27IjvvvtOY783u786duyIoKAgzJo1C9bW1pgxYwbc3Nzw+eefa+yXk5MDS0tLxMbGFiknMDCwyJNAAcDNzQ2fffaZ+t/R0dFwcnKCVCqFs7MzIiIiUFhYqF7/599/Y4ivL5q6uaHrlCk4nJJSwVoiorcZk40eNGzYEA0bNsShQ4eQn59fobLWrFmDtm3b4tdff8WSJUswduxYxMTEaCSC2NhY1K1bF4MGDSqy/9ixY5GWlobr16+rl926dQtnzpzBuHHjAACbN2/G8uXLsWjRIqSmpmLp0qUIDw9HVFQUgFePAv9w8WIUKpU4HhGBNX5+CNq0Cc+ePavQuRHR24vJRg9MTEwQERGBXbt2wcbGBgMHDsQXX3yh8TRNXTk7O2Pu3Llo3bo12rRpg1GjRuH+/ftITExUb7N7926MGDECdevWLbK/vb09OnXqhF27dmlsb2dnB0dHRwBASEgIli1bBg8PD9ja2sLNzQ2+vr7YuHEjACDh3//G1YwMRC1ahM4yGd7t2BErZ8/Gy5cvy3w+REQAk43eeHh44OrVq9ixYwcGDBiAM2fOYMCAAVi1alWZyun6xjNjmjRpgv79+6uTR2ZmJhITEzF27NgSyxg7diz27Nmj/vfu3bsxZswYAK8mMty5cwfz5s1DixYt0KJFC7Ru3RrLli1TP376WkYGmjdtCqvXnvzZo3171KrFtwsRlQ+/PfSoXr16cHV1hb+/P44ePYrJkydj5cqVeP78OWrVqgWlUvM5dcW1FEQiUZFl48aNw/79+5Gfn4+9e/eiRYsWcHZ2LjEOT09P3L59G2fOnMHvv/+O69evq7vQVN1xYWFhSExMRGJiIo4fP46UlBScPn26IqdPRFQiJhsBtWvXDi9fvkR+fj6aNm2Ku3fvqtfl5+drjKuUZsiQIQCAuLg4dSvFyMioxO0tLS3h4uKC3bt3Y/fu3ejZsydsbW0BABYWFmjWrBn+85//oHXr1mjdujVatWql/n8AaGdjg3/u38ede/fUZZ67ckVj3IiIqCw49VkPHj58iKlTp2LSpEno0KEDGjZsiN9//x2rV69G37590bhxY7i4uCA6OhpDhgxB06ZNsWrVKhQUFOhUfr169TBs2DCEhITg0qVLWLdundZ9xo4diy+++AJ16tTB/PnzNdYFBATgs88+g6mpKdzc3JCbm4urV68iMzMTfq6ucHV0RFsrK8wMCsLKWbOQ9+wZAtas4bU8RFRu/PbQA5FIhB49emDt2rW4efMmnj9/jmbNmsHT01M9JXnevHn466+/MHHiRIhEIsyfPx+ZmZk6H2Ps2LHYtm0bOnXqBHt7e63bDxs2DPPnz0dOTg5GjRqlsW7KlClo0KABVq9ejcDAQNSrVw/t27fHjBkzAAC1atXC9uXLMSc0FK4+PrCysMAKb298HBRUhlohIvp/RgqFQql9s8qRnZ0NU9Pi7xSQn5+PevXqVXJEb4fX69b4t99K3K7gjckLb1K9fryo85X09HTIZLKqDqNGYt0KR6i65ZgNEREJjt1oNURFWiREREJjy4aIiATHZENERILTmmyCgoIgFos1/tq2bater1QqERQUBHt7e1haWsLd3R1XrlwRNGgiIjIsOrVsZDIZrl27pv47deqUel14eDgiIiIQHByM+Ph4SCQSjBw5Eo8fPy5XQG9eZU+Gga8bEZVGp2RjYmICqVSq/mvatCmAV18wkZGR8PX1hYeHBxwcHBAZGYnc3FyNe3PpSiQSQaFQ8IvLAD19+pRT04moRDrNRrt16xbs7e1Rp04ddO/eHUuWLIGtrS0yMjIgl8vRr18/9bb169eHs7MzUlNTMW3atLIFY2KCRo0aIScnp8i6nJwcNG7cuEzlvU3qnD1b4rrn/70NTUler9vylmNiYlLsXaiJiAAdkk337t2xZs0ayGQy3L9/HyEhIXBzc8Pp06chl8sBABKJRGMfiUSi9er49PT0Mgdb0WfF1GTdX3sw2pvO6fBYalXdVrQcAOheyrryvO6G7G0738rEuhVOeepW24WgWpPNwIEDNf7dvXt3dOnSBdu3b0ePHj3KHJCugb2JVwyXn7Z607Vu9VH/b9NryPescFi3wqk2dxBo2LAh7O3tcfPmTUj/+7yTrKwsjW2ysrJgYWGhnwiJiMjglTnZ5OfnIz09HVKpFDY2NpBKpUhISNBYn5KSAicnJ70GSkREhktrN9oXX3yBwYMHo2XLluoxm6dPn2LChAkwMjKCt7c3wsLCIJPJYGdnh9DQUIhEInh6elZG/FRD8WaeRDWL1mTzzz//YPr06Xjw4AGaNm2K7t2749ixY7C2tgYAzJ07F3l5efDz84NCoYCjoyNiYmLQqFEjwYMnIiLDoDXZ/PDDD6WuNzIyQkBAAAICAvQWFBER1Sy8NxoREQmOyYaIiATHZENERIJjsiEiIsEx2RARkeCYbIiISHBMNkREJDgmGyIiEhyTDRERCY7JhoiIBMdkQ0REgmOyISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJjsmGiIgEx2RDRESCY7IhIiLBMdkQEZHgmGyIiEhwTDZERCQ4JhsiIhIckw0REQmuzMkmLCwMYrEYfn5+6mVKpRJBQUGwt7eHpaUl3N3dceXKFb0GSkREhqtMyebs2bPYtGkTOnTooLE8PDwcERERCA4ORnx8PCQSCUaOHInHjx/rNVgiIjJMOieb7OxszJgxA99//z3EYrF6uVKpRGRkJHx9feHh4QEHBwdERkYiNzcXe/bsESJmIiIyMDonG1UycXFx0ViekZEBuVyOfv36qZfVr18fzs7OSE1N1V+kRERksEx02Wjz5s24efMm1q9fX2SdXC4HAEgkEo3lEokEmZmZJZaZnp5eljjLvc/bonsp63SpN9U2FS2nOpVRHRhSrIaGdSuc8tStTCYrdb3WZJOeno7AwEAcOXIEtWvXLnMA5Q2suDjKug+9oq3edK1bfdR/dSmjMvA9KxzWrXCEqlut3WhnzpzBgwcP0KtXL5ibm8Pc3BzJycmIioqCubk5mjRpAgDIysrS2C8rKwsWFhZ6D5iIiAyP1paNu7s7unbtqrFs1qxZaNOmDT799FPY2dlBKpUiISEB3bp1AwDk5+cjJSUFgYGBwkRNREQGRWuyEYvFGrPPAKBBgwYwMzODg4MDAMDb2xthYWGQyWSws7NDaGgoRCIRPD09BQmaiIgMi04TBLSZO3cu8vLy4OfnB4VCAUdHR8TExKBRo0b6KJ6IiAxcuZLNwYMHNf5tZGSEgIAABAQE6CUoIiKqWfTSsiGqjkzf6P59XbZCUWlxEBFvxElERJWAyYaIiATHZENERIJjsiEiIsEx2RARkeCYbIiISHCc+kw6E4tNi12uUGRXciREZGjYsiEiIsEx2RARkeCYbIiISHAcsyGDU9LYEaD7+JE+yiAi3bFlQ0REgmOyISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJjsmGiIgEx2RDRESCY7IhIiLBMdkQEZHgmGyIiEhwWpPNhg0b4OzsDCsrK1hZWWHgwIGIi4tTr1cqlQgKCoK9vT0sLS3h7u6OK1euCBo0EREZFq3Jpnnz5li2bBlOnDiBhIQEuLi4YOLEibh06RIAIDw8HBEREQgODkZ8fDwkEglGjhyJx48fCx48EREZBq3Jxt3dHQMHDkTr1q1hZ2eHxYsXo2HDhjh79iyUSiUiIyPh6+sLDw8PODg4IDIyErm5udizZ09lxE9ERAagTGM2BQUF2Lt3L548eYKePXsiIyMDcrkc/fr1U29Tv359ODs7IzU1Ve/BEhGRYdLp4Wl//PEH3NzckJ+fD5FIhOjoaHTo0EGdUCQSicb2EokEmZmZ+o+WiIgMkk7JRiaTITExETk5Odi3bx+8vb1x4MCBCh04PT29UvZ5W3QvZZ0u9abaprRydC2/tDJKe0Lm2bPndCpD11j0UUZF8T0rHNatcMpTtzKZrNT1OiWbOnXqoHXr1gCALl264Pz581izZg0WLFgAAMjKyoKVlZV6+6ysLFhYWFQosDelp6eXeR96RVu9VbRu9fW66KOc6lIGwPeskFi3whGqbst1nU1hYSGeP38OGxsbSKVSJCQkqNfl5+cjJSUFTk5OeguSiIgMm9aWzdKlS+Hm5oYWLVqoZ5klJSVh165dMDIygre3N8LCwiCTyWBnZ4fQ0FCIRCJ4enpWRvxERGQAtCYbuVyOmTNn4t69e2jcuDE6dOiAPXv2oH///gCAuXPnIi8vD35+flAoFHB0dERMTAwaNWokePBERGQYtCabyMjIUtcbGRkhICAAAQEBeguKiIhqFt4bjYiIBKfTbDSit5mpWFziumyFotLiIDJkbNkQEZHgmGyIiEhwTDZERCS4GjdmU9rtUBSK7EqMpPpgnRBRVWPLhoiIBMdkQ0REgmOyISIiwTHZEBGR4JhsiIhIcEw2REQkOCYbIiISHJMNEREJjsmGiIgEx2RDRESCY7IhIiLBMdkQEZHgmGyIiEhwNe6uz0TVkT6e9sknhpIhY8uGiIgEx2RDRESCY7IhIiLBMdkQEZHgmGyIiEhwWpNNWFgYXF1dYWVlhTZt2mDcuHG4fPmyxjZKpRJBQUGwt7eHpaUl3N3dceXKFcGCJiIiw6I12SQlJeHjjz9GXFwcYmNjYWJighEjRuDRo0fqbcLDwxEREYHg4GDEx8dDIpFg5MiRePz4saDBExGRYdB6nU1MTIzGv9etWwdra2ucPn0aQ4YMgVKpRGRkJHx9feHh4QEAiIyMhEwmw549ezBt2jRhIiciIoNR5jGb3NxcFBYWQvzfC8wyMjIgl8vRr18/9Tb169eHs7MzUlNT9RYoEREZrjInm4ULF6Jjx47o2bMnAEAulwMAJBKJxnYSiQT37t3TQ4hERGToynS7mkWLFuH06dM4cuQIjI2NK3Tg9PR0gfbprtdjGoqSz7p0qjpR/bc85bxZrxWNpTqVoa0cbe8pXepV1/elPsqoSd7Gc64s5albmUxW6nqdk01AQABiYmKwf/9+2NraqpdLpVIAQFZWFqysrNTLs7KyYGFhUe7A3pSenl7mfSp6zLeBTCarcN3qq171UU5ll1HatrrWa3U5b0Oij+8DKp5QdatTN5q/vz/27t2L2NhYtG3bVmOdjY0NpFIpEhIS1Mvy8/ORkpICJycn/UZLREQGSWvLZsGCBdi5cyeio6MhFovVYzQikQgNGzaEkZERvL29ERYWBplMBjs7O4SGhkIkEsHT01PwEyAioupPa7KJiooCAPW0ZhV/f38EBAQAAObOnYu8vDz4+flBoVDA0dERMTExaNSokQAhExGRodGabBQ6PCfDyMgIAQEB6uRDRET0Ot4bjYiIBMdkQ0REgmOyISIiwTHZEBGR4Mp0BwEi0iQWm5a47uzZSgyEqJpjy4aIiATHZENERIJjsiEiIsFxzKYaMP3vs4GKk63DRbVERNUdWzZERCQ4JhsiIhIckw0REQmOYzbVXGnXcSgU2ZUYCdUEHB+kqsKWDRERCY7JhoiIBMduNCICwC5bEhZbNkREJDgmGyIiEhyTDRERCc4gx2xKm74JKCsrDCIi0hFbNkREJDgmGyIiEpxBdqMR1ST6mHLMactU3bFlQ0REgmOyISIiwemUbJKTkzF+/Hi0b98eYrEY27Zt01ivVCoRFBQEe3t7WFpawt3dHVeuXBEkYCIiMjw6JZsnT57AwcEBK1euRP369YusDw8PR0REBIKDgxEfHw+JRIKRI0fi8ePHeg+4ujEVi0v8IyKiV3RKNm5ubliyZAk8PDxQq5bmLkqlEpGRkfD19YWHhwccHBwQGRmJ3Nxc7NmzR5CgiYjIsFR4zCYjIwNyuRz9+vVTL6tfvz6cnZ2Rmppa0eKJiKgGqPDUZ7lcDgCQSCQayyUSCTIzM0vcLz09vczHUu3Tvcx7lv+Y2pQWi67H08f5VLSMitTtm+dZHc5HX2VUpJzXy6ou51OdPjsVVR1jqinKU7cymazU9VV2nY22wN6Unp5e5n0qesyKEvp4+ihfJpNVuG71dZ76Op/qUIa+yqou51PZnx1t9PF9QMUTqm4r3I0mlUoBAFlZWRrLs7KyYGFhUdHiiYioBqhwsrGxsYFUKkVCQoJ6WX5+PlJSUuDk5FTR4omIqAbQqRstNzcXN2/eBAAUFhbizp07uHDhAszMzGBlZQVvb2+EhYVBJpPBzs4OoaGhEIlE8PT0FDR4IZV0+w/e+oOo9DuvZysUlRYHGQ6dks1vv/2GYcOGqf8dFBSEoKAgTJgwAZGRkZg7dy7y8vLg5+cHhUIBR0dHxMTEoFGjRoIFTkREhkOnZPPee+9BUcqvFSMjIwQEBCAgIEBfcRERUQ3Ce6MREZHg+IgBIqoSHPd5u7BlQ0REgmOyISIiwbEbjYj0qjKfGsquOMPBlg0REQmOyYaIiATHZENERIJjsiEiIsEx2RARkeCYbIiISHBv9dTn0qZNAsrKCoOI3lCZ06f1hdOwS8eWDRERCY7JhoiIBMdkQ0REgnurx2yEZoj9zkQ1RVk+fyWNt3CsRX/YsiEiIsEx2RARkeCYbIiISHBMNkREJDgmGyIiEhyTDRERCY7JhoiIBMdkQ0REgmOyISIiwek12URFRaFTp06QSqXo27cvTp06pc/iiYjIQOntdjUxMTFYuHAhVq1ahV69eiEqKgpjxozB6dOnYWVlpa/DEBHVWEI/pqAqb6Glt5ZNREQEPvzwQ0ydOhXt2rVDSEgIpFIpfvjhB30dgoiIDJSRQqGo8FPCnj9/jmbNmmHjxo0YMWKEevmCBQtw+fJlHDp0qKKHICIiA6aXls2DBw9QUFAAiUSisVwikeDevXv6OAQRERkwzkYjIiLB6SXZmJubw9jYGFlZWRrLs7KyYGFhoY9DEBGRAdNLsqlTpw66dOmChIQEjeUJCQlwcnLSxyGIiMiA6W3q86xZs/DJJ5/A0dERTk5O+OGHH3D37l1MmzZNX4cgIiIDpbcxm1GjRiEoKAghISF47733cPr0aezatQvW1tYVKpcXilZcWFgYXF1dYWVlhTZt2mDcuHG4fPmyxjZKpRJBQUGwt7eHpaUl3N3dceXKlSqK2DCFhYVBLBbDz89PvYz1Wn53796Fl5cX2rRpA6lUCicnJyQlJanXs27Lp6CgAF999ZX6e7VTp0746quv8PLlS/U2QtStXicITJ8+HRcvXsS9e/dw4sQJ9O7du0LlqS4UnT9/Pk6ePImePXtizJgxuH37tp4ifjskJSXh448/RlxcHGJjY2FiYoIRI0bg0aNH6m3Cw8MRERGB4OBgxMfHQyKRYOTIkXj8+HEVRm44zp49i02bNqFDhw4ay1mv5aNQKDBo0CAolUrs2rULqamp+PrrrzVmvLJuy+fbb79FVFQUgoODcebMGaxcuRIbNmxAWFiYehsh6lYv19kIpX///ujQoQNWr16tXtatWzd4eHjgyy+/rMLIDFtubi6sra2xbds2DBkyBEqlEvb29pgxYwYWLFgAAMjLy4NMJsPy5cvZFapFdnY2+vbti9WrVyM4OBgODg4ICQlhvVZAYGAgkpOTERcXV+x61m35jRs3DmZmZli7dq16mZeXFx49eoSdO3cKVrfVdurz8+fP8fvvv6Nfv34ay/v164fU1NQqiqpmyM3NRWFhIcT/vTVGRkYG5HK5Rl3Xr18fzs7OrGsd+Pr6wsPDAy4uLhrLWa/ld/DgQTg6OmLatGmws7NDnz59sH79eiiVr34bs27Lr1evXkhKSsL169cBAFevXkViYiIGDhwIQLi61dsEAX3jhaLCWbhwITp27IiePXsCAORyOQAUW9eZmZmVHp8h2bx5M27evIn169cXWcd6Lb9bt25h48aN8PHxga+vLy5evAh/f38AwMyZM1m3FeDr64vc3Fw4OTnB2NgYL1++xIIFCzB9+nQAwr1vq22yIWEsWrQIp0+fxpEjR2BsbFzV4Ri09PR0BAYG4siRI6hdu3ZVh1OjFBYWomvXruru8s6dO+PmzZuIiorCzJkzqzg6wxYTE4MdO3YgKioK9vb2uHjxIhYuXAhra2tMmTJFsONW2240XiiqfwEBAdi7dy9iY2Nha2urXi6VSgGAdV1GZ86cwYMHD9CrVy+Ym5vD3NwcycnJiIqKgrm5OZo0aQKA9VoeUqkU7dq101jWtm1b3LlzR70eYN2Wx5IlSzB79myMHj0aHTp0wPjx4zFr1ix88803AISr22qbbHihqH75+/urE03btm011tnY2EAqlWrUdX5+PlJSUljXpXB3d8epU6eQmJio/uvatStGjx6NxMRE2NnZsV7LqVevXrhx44bGshs3bqgfV8L3bPk9ffq0SK+GsbExCgsLAQhXt9W6G40XiurHggULsHPnTkRHR0MsFqv7ZEUiERo2bAgjIyN4e3sjLCwMMpkMdnZ2CA0NhUgkgqenZxVHX32JxWL1JAuVBg0awMzMDA4ODgDAei0nHx8fuLm5ITQ0FKNGjcKFCxewfv16LF68GAD4nq2AwYMH49tvv4WNjQ3s7e1x4cIFREREYPz48QCEq9tqnWxGjRqFhw8fIiQkBHK5HO3bt9fLhaJvm6ioKACAh4eHxnJ/f38EBAQAAObOnYu8vDz4+flBoVDA0dERMTExaNSoUaXHW5OwXsunW7du2LZtGwIDAxESEoKWLVti0aJF6kFsgHVbXl9//TVWrFiB+fPn4/79+5BKpZg6dSo+++wz9TZC1G21vs6GiIhqhmo7ZkNERDUHkw0REQmOyYaIiATHZENERIJjsiEiIsEx2RARkeCYbIiISHBMNkREJDgmGyIiEtz/AWahLa3zU3kzAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
      },
-     "metadata": {}
+     "metadata": {},
+     "output_type": "display_data"
     }
    ],
    "source": [
@@ -281,23 +441,25 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "metadata": {},
    "source": [
     "Firstly, we check whether there are void values."
-   ],
-   "cell_type": "markdown",
-   "metadata": {}
+   ]
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 33,
    "metadata": {
     "tags": []
    },
    "outputs": [
     {
-     "output_type": "stream",
      "name": "stdout",
-     "text": "19.865319865319865\n"
+     "output_type": "stream",
+     "text": [
+      "19.865319865319865\n"
+     ]
     }
    ],
    "source": [
@@ -307,19 +469,913 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "metadata": {},
    "source": [
     "Since approximately a fifth of the values are null, the first step to use the `Age` feature is to fill these values.\n",
     "\n",
     "As seen in the correlation map, age is most correlated with `Pclass`. Thus, we fille the missing `Age` values with the median age value of each `Pclass`."
-   ],
-   "cell_type": "markdown",
-   "metadata": {}
+   ]
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
-   "metadata": {},
-   "outputs": [],
+   "execution_count": 34,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n",
+      "/home/kat/PDS/pds-hovi-martin-ruffine/_titanic/preprocessing.py:79: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df[feature][i] = df[df[classes]==current_class][feature].median()\n"
+     ]
+    }
+   ],
    "source": [
     "train2 = train.copy()\n",
     "_titanic.fill_with_median(train2, 'Age', 'Pclass')\n",
@@ -327,23 +1383,34 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "metadata": {},
    "source": [
     "We can now add the `Age` feature to the model."
-   ],
-   "cell_type": "markdown",
-   "metadata": {}
+   ]
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 35,
    "metadata": {
     "tags": []
    },
    "outputs": [
     {
-     "output_type": "stream",
      "name": "stdout",
-     "text": "              precision    recall  f1-score   support\n\n           0       0.71      0.90      0.79       157\n           1       0.77      0.48      0.59       111\n\n    accuracy                           0.72       268\n   macro avg       0.74      0.69      0.69       268\nweighted avg       0.73      0.72      0.71       268\n\nscore : 0.7238805970149254\n"
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.71      0.90      0.79       157\n",
+      "           1       0.77      0.48      0.59       111\n",
+      "\n",
+      "    accuracy                           0.72       268\n",
+      "   macro avg       0.74      0.69      0.69       268\n",
+      "weighted avg       0.73      0.72      0.71       268\n",
+      "\n",
+      "score : 0.7238805970149254\n"
+     ]
     }
    ],
    "source": [
@@ -354,23 +1421,34 @@
    ]
   },
   {
+   "cell_type": "markdown",
+   "metadata": {},
    "source": [
     "Adding both features hightened significantly the score. However, in the relative distribution of the `Age` feature, one can see age categories would be more appropriate than simply leaving the age."
-   ],
-   "cell_type": "markdown",
-   "metadata": {}
+   ]
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 36,
    "metadata": {
     "tags": []
    },
    "outputs": [
     {
-     "output_type": "stream",
      "name": "stdout",
-     "text": "              precision    recall  f1-score   support\n\n           0       0.69      0.86      0.76       154\n           1       0.72      0.46      0.56       114\n\n    accuracy                           0.69       268\n   macro avg       0.70      0.66      0.66       268\nweighted avg       0.70      0.69      0.68       268\n\nscore : 0.6940298507462687\n"
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.69      0.86      0.76       154\n",
+      "           1       0.72      0.46      0.56       114\n",
+      "\n",
+      "    accuracy                           0.69       268\n",
+      "   macro avg       0.70      0.66      0.66       268\n",
+      "weighted avg       0.70      0.69      0.68       268\n",
+      "\n",
+      "score : 0.6940298507462687\n"
+     ]
     }
    ],
    "source": [
@@ -380,6 +1458,324 @@
     "X4, y4 = _titanic.parse_model(model4, name_Y=\"Survived\", use_columns=model4_cols)\n",
     "_titanic.logmodel_prediction(X4, y4, 0.3, 101)"
    ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 37,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAEeCAYAAAA5CErsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzkklEQVR4nO3deXxNZ+LH8c8lsQW5aWRBs7QSlKKDhkkrGhSRltpp6VSH2JfUEmotNaH2WmKKTqtoEaaMqdCKvSFUJ9Fq0VqGKYmlNyQVQu7vD7/cupJIEImj3/frldfUOc8553mSued7n+Xca7JYLFZEREQMoFhRV0BERCS/FFoiImIYCi0RETEMhZaIiBiGQktERAxDoSUiIoah0HrEREZGYjab2blz5wO9TmhoKGaz+YFeo6Ds3LkTs9lMZGSk3faibkNufyuz2UytWrWKqFY3LV++HLPZzPLly4u0HgVh69attGzZEl9fX8xmM6GhoUVdJbkPCq1CZDab7X5cXFzw9vamefPm/P3vfycjI6Ooq2iTdUM/efJkUVfloVWrVi3DBPftskLp9iB/1Jw8eZKuXbty6NAhOnbsSEREBK+++mqex6WkpBAZGUlQUBCPP/447u7uVK9enSZNmhAREUF8fHwh1F5y4lDUFfgjioiIAODGjRv897//ZcOGDcTHx7Nt2zY+/fTTIq5d/ixcuJArV64UdTXuS1G3ISwsjPbt2/P4448XWR1y89JLL/Hss8/i4eFR1FW5L9u3byc9PZ2IiAjCw8PzdczZs2dp2bIlJ06cwMfHh/bt21OhQgVSUlJITExk8eLFXLt2jYCAgAdce8mJQqsIjBo1yu7fP/30E40bN2bjxo3s2rWL559/vohqln9eXl5FXYX7VtRtcHV1xdXVtUjrkBtnZ2ecnZ2Luhr37cyZMwC4u7vn+5jIyEhOnDhBt27dmDt3LiaTyW7/hQsXOH78eIHWU/JPw4MPAT8/P5577jkAvv3222z7jx07xsCBA3n66adxd3enSpUqvPbaa/znP//J9zU2bNhAWFgY9erVo1KlSlSqVImgoCAWLFjAjRs37MqazWZ2794NQJ06dWzDmbfOs9w+H7RmzRrMZjPDhw/P8frXr1+nWrVqVK5cmdTUVLt969ato02bNvj6+uLu7k7dunWZMGECly5dynf7AJKTkxkwYAD+/v54enry/PPPs2LFilzL5zSnZbVa+fTTT2nRogV+fn54eHhQo0YNXn75ZT7++GPg5pCT2Wzm1KlTgP2w763zJVnDh1evXiUyMpK6devi5ubGyJEjgbznHy0WC0OHDqV69ep4eHjQsGFDFi1ahNVq/8lruc3Z5dbOvn370r9/fwCmTp1qV/+sutxpTisxMZE33ngDf39/3NzcqFmzJgMGDODEiRPZyma1cfny5ezYsYPQ0FAef/xxvLy86NSpE4cPH86xzrmxWq0sXbqUZs2a8fjjj1OxYkUaNWrE3Llz7YbXb/+d9O/fP1sbc7N3717gZk/49sCCm2826tevn217ZmYmS5cupUWLFnh7e+Ph4cGf//xnZs6cybVr12zlLBYLtWvXxs3Njf3792drX6dOnTCbzXzwwQf5/8X8gain9ZDIuhE5ONj/SbZv385rr71Geno6LVq0oEqVKpw5c4Z//etffPXVV6xYsYKmTZvmef533nmHYsWK2ULr0qVL7Nixg7fffpsDBw6wePFiW9mIiAhWrFjBqVOn6NOnj+0d953eeYeGhuLs7MyaNWuYPHkyJUqUsNu/ZcsWkpKS6Nq1K2XLlrVtHzp0KEuWLKFy5cq89NJLmM1m9u/fz+zZs9m8eTObNm2iXLlyebbvwoULNG/enBMnTtCgQQMCAwM5e/YsQ4cO5YUXXsjz+CyTJk1i5syZeHt706ZNG5ydnUlKSuK7777js88+4y9/+QvOzs5EREQQFRXFpUuXbMO9AN7e3tnO+frrr5OQkEDTpk156aWX8PHxybMeGRkZtG3blkuXLtGhQweuXr3KunXrGD58OD/99BNTp07Nd5tuFxoaSkpKCl988QXPPfecXc8+p/rf6ssvv6Rbt27cuHGDl19+mSeeeILvv/+eZcuWsWHDBtavX0/t2rWzHbdp0ya++OILmjVrRo8ePTh8+DCbN2/mwIED7N27N989zj59+rBy5UoqVarEq6++iqOjIzExMYwdO5atW7eyatUqHBwc8Pb2JiIigl27drF7925atWple9OVVxtdXFwA+Pnnn3NsS06uX79Ot27diImJwc/Pj/bt21OyZEl2797NxIkT2b59O2vWrMHBwQGz2cyHH35ISEgIPXr0sAUswNy5c9m8eTMvv/wyYWFh+br2H41C6yFw+PBhW8/mz3/+s217SkoKPXr0wNHRka+++orq1avbHdO0aVP69+9PQkICJUuWvOM1Vq1axRNPPGG3LTMzk379+vHZZ5/Ru3dvnn32WeDm8OWuXbs4deoUffv2zddNtlSpUrRv354PP/yQTZs28fLLL9vtz5qru3USfOXKlSxZsoSXXnqJRYsWUbp0adu+adOmMXnyZKZMmcLkyZPzvP7EiRM5ceIEvXr1Ytq0abbtffr0oVmzZnken+Uf//gHFStWJC4uDicnJ7t9Fy5cAG72rEaNGsWKFSu4dOlStuHe2506dYrdu3ff1VDg2bNn8fX15euvv7b9bUeOHElwcDB///vfadeuHQ0aNMj3+W710ksv2ULr+eefz7P+WdLS0ujTpw8ZGRl8/vnnBAUF2fYtXbqUQYMG0adPH3bv3p2th/Lvf/+btWvX0rhxY9u2d955h1mzZrFs2TIGDx6c5/XXrl3LypUrqVmzJhs3bqR8+fIAjB8/ng4dOhAbG0tUVBQDBw7Ex8eHUaNGERkZye7duwkNDeW1117LVzvbtm1LXFwcgwYN4sCBAwQHB1O7dm0qVKiQ6zGzZs0iJiaGXr16MWXKFIoXLw7cfI2Fh4fz8ccfs2TJEnr37g1A/fr1GT9+PGPGjKF///4sX76c/fv3M2nSJLy9vZk7d26+6vpHpOHBIhAZGUlkZCTvvvsuYWFhvPDCC/z2228MHDiQZ555xlbus88+4+LFi0RERNgFFkC1atV4/fXXOXv2LNu3b8/zmrcHFkCxYsXo06cPALGxsffXKH4PpNuH5CwWCxs3bsTHx8fuXf2CBQsoXrw4c+fOtQssgLfeegtXV1dWrVqV53UzMjJYvXo1Tk5OjB492m5fnTp16NSp0121w9HRMVuPF7jn+afRo0ff07Hjxo2zezPi6urKW2+9BVAkS9H//e9/c+HCBVq3bm0XWHCzN1mnTh0OHTrEvn37sh3bvn17u8AC+Mtf/gLAN998k6/rL126FLgZUlmBBVCiRAn+9re/AdiGcO9Hr169eOutt8jIyGDu3Lm0a9cOPz8/atasSe/evW3Dh1kyMzNZuHAhbm5uREZG2gILbr7G3nnnHUwmEytXrrQ7bsCAAbRs2ZJ///vfTJ06lTfffBOADz/80LCrUguDelpFIKehnTFjxjBs2DC7bVkvju+//z7H+YqffvoJuNnrat68+R2vefHiRd5//302b97MyZMnSUtLs9ufNWF9P+rXr0+1atX46quvOH/+vO2d6Zo1a7h69SpdunSxvQP/7bffSExMxMXFhYULF+Z4vhIlSnDmzBkuXrzIY489lut1jxw5wm+//UZAQECOL/bnnnsu3zf5jh078sEHHxAQEMArr7zCn//8Zxo0aGAbMroX9erVu+tjHBwccuxJZc19JiYm3nN97lVCQgJAtsDK8sILL5CQkEBCQkK2lXW3vhnLkrVq0mKx3NX1GzVqlG3f008/jZubGz/99BOpqal2Q9B3y2QyMW7cOAYNGkRsbCz79u0jISGBb775hpUrV7Jy5UpGjhxpm5v86aefuHDhAk888YRdL/9WpUuX5siRI9m2R0VF0ahRI9vre9KkSTnOl8nvFFpFIOtF+ttvv3HgwAHCw8OZPHkyvr6+dOjQwVbu4sWLAHzyySd3PN/tAZTT9YKDgzl58iT16tWjS5cuuLi4ULx4cVJSUli4cCFXr169v0b9v1dffZXx48ezevVq+vbtC9wcGjSZTHTt2tWuTlarlYsXL+Y5P5OamnrH0MpasOHm5pbj/rtdOfbkk0+yYsUK3n//febMmUOxYsVo3LgxEydOvKeHfu9l2birq6vdO/YsWW2820UqBSHrmrn9PrPamZKSkm1fTvOhWb3Z2xcC3en65cuXz9Yrv/X6586d49KlS/cVWlnMZjPt2rWjXbt2wM3X2axZs5g+fTpTpkyhVatW1K5d2/Y6PX78+F3PNbq4uBAUFMSKFSsoW7Ysr7/++n3X+1Gn4cEiVKZMGZ5//nmio6MpXbo0Q4YM4ezZs7b9WUMg27Ztw2Kx5PqT9Y4vN5988gknT54kIiKCLVu2MGPGDMaMGcOoUaNsL8iC0rlzZ4oXL24bIjxy5Aj79+8nMDAQX1/fbG2rUaPGHdtmsVjynDjPOte5c+dy3J+cnJzv+hcvXpw+ffqwY8cOfv75Z1asWEGnTp3Ytm0bbdu2td2g7kZOK9DycuHChRxv5lltvHV4rFixmy/j3G7+OYXIvci6Zm6/z6SkpGx1K0jly5fn0qVLuT5b96Cv7+TkxJgxY2zzzjt27LC7XsuWLfP8//Lt1q9fz4oVK3B1dSU1NdU2/Cu5U2g9BHx8fBg8eDCpqam2sXnAtjAiLi7uvs5/7NgxAFq3bp1tX9YCkNvdOpF8Nzw9PWnSpAkHDx7ku+++y3EBBkDZsmWpUaMGR48etS1wuFdVq1alTJkyfP/99zneGHJrY14ee+wxWrVqxcKFC2nfvj3nz5+3+1tk/Y7y21O4G9evX882dwK/t+XWVW1ZQ6KnT5/OVj4lJYWff/452/Z7qXudOnUAcl0ynnUTz2kosCBkXX/Xrl3Z9h06dIhz587h5+dXIL2sO8k6f9aK36pVq+Ls7MyBAwfslrbn5cSJEwwYMABnZ2diY2N58cUXWbNmDR999NGDqPYjQ6H1kOjXrx+urq6sWLHCNlfVrVs3zGYz06ZNy/FjY6xWK3FxcXm+ULJ6Kre/2BMSEpg1a1aOx2QNx2U9i3Q3slZpLVu2jFWrVuHk5ESbNm2ylevfvz8ZGRn069ePX3/9Ndv+y5cvZ3uOJSeOjo507NiRtLS0bCsNExIS8rWYA+Dq1as5vkGwWq22Hk6ZMmVs2+/nd5QfkyZNshu2vXDhAjNnzgSwWwlXtWpVypcvzxdffGHrbcDN4Bs1alSOPZOsuucUdLkJDQ3lscceY926ddneCCxfvpxvv/2Wp556yvZmq6B1794duLlS9NZn/TIyMmwLcApieO3999/nhx9+yHFfXFycLbSz5hcdHBzo06cPycnJDBs2jN9++y3bcRcuXLCbh8zIyODNN9/k0qVLzJs3Dx8fHxYuXEjFihUZNWoU33///X2341GlOa2HRLly5RgyZAhjx45l8uTJ/OMf/8DFxYWlS5fSrVs3mjdvTlBQENWrV8fR0ZH//e9/7N+/n9OnT3PixIlsz0XdqkuXLrz//vuMGjWKnTt3UqVKFX7++Wfb0vS1a9dmOyY4OJjPP/+cwYMH07p1a8qWLYuzs3O+nh0JCQnBxcWFJUuWkJGRke3ZrCyvvfYaCQkJfPDBBzzzzDM0bdoUb29vUlJS+O9//8vXX39NcHDwHR8QzjJu3Di2b9/OokWLSExMJDAwkKSkJP75z3/SrFkzNm7cmOc5rly5QkhICL6+vvzpT3/Cy8uLjIwMdu3axcGDB3n22WftFgEEBwdz4MABunfvTvPmzSlVqhReXl506dIlz2vlxdPTkytXrhAYGEhISAhXr15l/fr1JCUl0bt3b7tFGo6OjvTr148pU6YQFBTESy+9hMlkYufOnVitVp5++mm+++47u/MHBATg5OTE2rVrcXR0xMvLC5PJROfOnXMdjnVycmLBggW8/vrrvPLKK7Ru3RpfX1++++47Nm/ejLOzM1FRUfc0HJof7du3JyYmhtWrV9OwYUNCQ0Ntz2llfapMv3797vs6q1atYty4cVStWpX69evj6elJWloaP/74Izt27MBqtdK3b1/q1q1rO2b48OEcOnSIpUuXsnnzZoKCgqhcuTLnz5/n+PHj7Nmzh549e9p6yOPHj+fAgQP06tXL9niIq6srixYtok2bNrz55pvExsZme+xCFFoPlZ49e7JgwQI+//xzhgwZQp06dQgKCmL37t3MmzePLVu2EB8fj4ODAx4eHgQEBDBhwoQ8x/ArVqzIxo0bmTBhAnv27CE2NhZ/f39mzJhB48aNcwyt7t27c/r0aaKjo1mwYAEZGRl4eXnlK7RKlixJhw4dWLRoEZB9aPBW7733Hs2bN2fJkiXs2rWLX3/9FWdnZypVqkTPnj3tFqbciaurK5s2bWLixInExMSQkJCAn58f06dPx9vbO1+h5eTkxMSJE9m5cyf79u1j48aNlC5dGh8fH95991169OhhtxR+6NChXLp0iY0bNzJnzhyuX7/Oc889VyCh5ejoyOeff87EiROJjo7m4sWLPPHEEwwdOpRevXplKx8REYGTkxP/+Mc/WLp0KY899hihoaGMHTuWbt26ZStvNptZtmwZU6dO5Z///Ket59KwYcM7ziG2bNmSzZs3M3PmTLZv3866detwc3Oja9eujBgxwm7e8kH4+9//TmBgIJ988gmffPIJmZmZVKlShYkTJ9KnT58cH1W4WwsWLODLL79kx44d7N69m+TkZDIzM3F3d+fll1+me/fuvPjii3bHODg4sHTpUtasWcPy5cv58ssvbQuIvLy8eOutt+jcuTMAGzduZMGCBdSqVYt3333X7jzPP/88w4cPZ8qUKQwbNoyoqKj7bs+jxmSxWKx5FxMRESl6mtMSERHDUGiJiIhhKLRERMQwFFoiImIYCi0RETEMhZaIiBiGQktERAzjkQuto0ePFnUVREQeaUV5n33kQktERB5dCi0RETEMhZaIiBiGQktERAzDkJ/yfv369Vy/Yr5UqVIF9k2tUrCcnJwK5FO4ReSPy3B3kOvXr3P58mXMZnOO39tTsmRJSpUqVQQ1kzuxWq1YLBbKlSun4BKRe2a44cG0tLRcA0seXiaTCbPZnGsPWUQkPwwXWoACy6D0dxOR+/XIjtMU//bbXPfd+NOfCrEmIiJSUAzZ0xIRkT8mhdYfxPDhwwkNDS3qaoiI3JdHZnjQ2Wy++b+FdL0Ui+Wuyvft25dPP/0UAAcHB8xmM9WrV6dNmza88cYbODo6PoBaiog8WtTTKkQvvPAChw8fJjExkbVr19KyZUsiIyMJCQnRqjoRkXxQaBWikiVL4uHhQaVKlahduzYDBgxgw4YNJCQkMGfOHACuXbvG+PHjqVGjBhUrViQ4OJgtW7bYznHjxg0GDBhA7dq18fT0pG7dusyZM4fMzEy7MmPGjMHHxwcfHx9GjhzJjRs3Cr29IiIFTaFVxGrUqEHTpk3517/+BUD//v3ZvXs3ixYtIi4ujq5du9KlSxcOHjwIQGZmJhUrVuSjjz5i7969jB07lhkzZrBs2TLbOefNm8fSpUuZPXs2X375JTdu3GD16tVF0j4RkYL0yMxpGVn16tXZvn07x48fJzo6msTERLy8vAAICwtj27ZtfPTRR8yYMQNHR0dGjx5tO9bHx4eEhATWrFnD66+/DkBUVBSDBg2ibdu2AEydOpXY2NjCb5iISAFTaD0ErFYrJpOJhIQErFYrDRs2tNt/9epVgoKCbP/+8MMPWbp0KadOnSI9PZ2MjAxbyKWkpHD27FmeffZZW/lixYpRr149/ve//xVOg0REHhCF1kPgxx9/xNfXl8zMTEwmE7GxsdlWE2Z9nuLatWsZNWoUkyZNIiAggPLly7No0SI2bNhQFFUXESlUCq0idujQIbZs2cKwYcOoXbs2VquVpKQku57VreLi4qhXrx5hYWG2bcePH7f9t7OzM56enuzfv5/GjRsDN3tyBw4cwMPD48E2RkTkAVNoFaKrV6+SlJREZmYm58+fZ/v27cycOZNnnnmGgQMH4uTkRKdOnejXrx+TJ0+mTp06/Prrr+zatQsfHx9at26Nn58fn376KV9++SVPPvkka9as4euvv8bZ+fcn1Pr06cPMmTPx8/OjRo0aLF68mKSkJIWWiBieQqsQbdu2jWrVqlG8eHGcnZ156qmnGDlyJG+88QYlSpQAYP78+UyfPp1x48bxyy+/4OLiQt26dWnUqBEAPXr04ODBg/Ts2ROr1Urr1q3p37+/3erBAQMGkJSUxMCBAwHo3LkzHTt25PDhw4XfaBGRAmSyWCzWoq7E3UhJSbHrVdwuPT2dUqVK6QNzH1J5/f1E5OF39OhR/P39i+Taek5LREQMQ6ElIiKGodASERHDUGiJiIhhKLRERMQwFFoiImIYCi0RETEMhZaIiBiGQktERAxDofUHERoayvDhwx/4dSpXrszy5csf+HVE5I/pkfnsQbM566OBsv73hQd6PYsl5a6POX/+PJGRkWzevJmkpCTb5w+Gh4cTHBz8AGr5u2XLluHg8Mj8uUXkD0p3sULUvXt3rly5wrx583jiiSc4f/48u3fv5uLFi/d8zmvXrtk+bPdOXFxc7vkaIiIPCw0PFhKLxUJcXBwTJkygcePGeHt7U7duXQYOHEj79u0BqFWrFnPnzrU77vZhvVq1ahEZGUn//v3x9vamV69eNG/enNGjR9sdd+nSJTw9PVm/fn2280ycONH2XVu3at68OSNGjLD9e9myZTRo0AAPDw/q1avH/PnzyczMtO0/duwYoaGheHh4UL9+fWJiYu7ztyQicmcKrUJStmxZypYtyxdffEF6evp9nWvBggVUrVqVbdu2MW7cODp16sTatWvtAmX9+vWULFmSFi1aZDu+U6dOJCQkcOTIEdu2EydOEB8fT+fOnQH4+OOPmTRpEm+//TZ79+7l3XffZc6cOSxevBiAzMxMunXrRmZmJps3b2bevHlMmTKFq1ev3lfbRETu5K5Da+bMmZjNZrt3/1arlcjISKpXr46npyehoaH88MMPdsdZLBbCwsLw9vbG29ubsLAwLBbLfTfAKBwcHJg/fz6rVq3Cx8eHF198kTFjxrB///67PldgYCCDBw/mySefpEqVKrRr147z58+zc+dOW5nVq1fzyiuvULJkyWzHV69endq1a7Nq1Sq78n5+ftSrVw+AadOm8c4779CmTRt8fX0JCQlhyJAhLFmyBLj53WA//vgjH3zwAXXq1KFhw4ZERkZy/fr1u26PiEh+3VVo7du3j48++oiaNWvabZ8zZw7z589n6tSpxMbG4ubmRtu2bbl8+bKtTM+ePUlMTCQ6Opro6GgSExPp3bt3wbTCINq0acOPP/7IZ599RrNmzYiPj6dZs2bMmDHjrs7zp9u+D+yxxx6jadOmthA6c+YMO3fupFOnTrmeo1OnTkRHR9v+vXr1ajp27AjcXDBy+vRpwsPDqVy5su3nnXfe4fjx4wAcPnyYSpUq4eXlZTtH/fr1KVZMnXcReXDyfYdJSUmhV69ezJs3D7PZbNtutVqJiopiyJAhtGnThho1ahAVFUVqaqrtpnj48GG++uorZs+eTUBAAAEBAcyaNYtNmzZx9OjRAm/Uw6xUqVIEBwcTERHB5s2b6d69O1OmTOHatWsUK1YMq9X+Ozlz6rk4OTll29a5c2f+9a9/kZ6ezpo1a6hcuTKBgYG51qNDhw6cOnWK+Ph4/vOf/3DkyBHb0GDWMOPMmTPZuXOn7ScuLo49e/bcT/NFRO5LvkMrK5SCgoLstp88eZKkpCSaNGli21a6dGkCAwPZu3cvAPHx8ZQtW5YGDRrYyjRs2BAnJydbmT+qatWqcf36ddLT06lQoQJnz5617UtPT7ebd7qTkJAQADZt2mTrNZlMplzLe3p6EhQUxOrVq1m9ejUBAQH4+voC4O7uTsWKFTl+/DhPPvlktp+sev/yyy+cPn3ads5vvvnGbl5NRKSg5WvJ+8cff8yxY8f44IMPsu1LSkoCwM3NzW67m5sbZ86cASA5ORlXV1e7m6jJZKJChQokJyfnet2cemGlSpXKcZ7m9+ezCsfdLqa4ePEivXr1omvXrtSoUQMnJycSEhKYM2cOjRo1okSJEgQGBvLpp5/StGlTXF1dmTNnDtevX7eFGtzs2WZkZOR4/VatWvHee+/x/fff8/7779uVyczMtDsPQNu2bZkwYQIlSpRg8ODBdvuGDRvG6NGjcXJyomnTpmRkZHDw4EHOnj3LoEGDaNiwIX5+foSFhTFx4kTS09MZM2YMDg4OudYPbq5qvNPfXESM4V5Gyfz9/e/7unmG1tGjR5k4cSIxMTE4Ojre9wXvRk4NTElJoVSpUoVaj5zcbR1cXV1p0KABS5Ys4dixY1y7do2KFSvSsWNHhg8fTqlSpRg+fDi//PILPXr0wMnJiaFDh5KcnIyDg4PteiaTCUdHxxyv37VrVz777DNq165NnTp17PYVK1bM7jwA7dq1Y+TIkVy+fJnOnTvb7fvrX/+Ks7Mz77//Pn/7298oVaoUTz31FL169bKVW7FiBYMGDaJVq1Y8/vjjvPvuu/Tq1SvX+gGUL1/ebh5MRIzn6NGjBRJA98JksVisdyqwfPly+vfvT/HixW3bbty4gclkolixYuzZs4dnn32W2NhY6tatayvTqVMnHnvsMRYuXMgnn3zCqFGjOHXqlK23ZbVaefzxx5k6dSrdunXLd4VTUlJwds69V5Wenk6pUqUo/u23uZa5cdtCBik8ef39ROThV5ShleecVmhoKF9//bXdhPyf/vQn2rdvz86dO/Hz88PDw4OtW7fajklPTycuLs42hxUQEEBqairx8fG2MvHx8aSlpdnNc4mIiNxJnsODZrPZbrUgQJkyZXBxcaFGjRoA9O3bl5kzZ+Lv74+fnx/Tp0/HycmJDh06ADcn7Zs1a0Z4eDizZ88GIDw8nBYtWhRZWouIiPEUyGcPDh48mCtXrjB8+HAsFgv16tVj7dq1lCtXzlZm8eLFjBgxwvaRRSEhIbz33nsFcXkREfmDyHNO62GjOS1j05yWiPE91HNaIiIiDwtDhtbtnxohxqC/m4jcL8OFlpOTExaLRTdAg7FarVgslhw/gkpEJL8M9yWQDg4OlCtXjkuXLuW4/9KlS5QvX54S+/bleo5r//9RRFK4ypUrp29PFpH7YriFGHnJmiB0vm2Z/q1S/kBfiSIiUtC0EENERCQfFFoiImIYCi0RETEMhZaIiBiGQktERAxDoSUiIoah0BIREcNQaImIiGEotERExDAUWiIiYhgKLRERMQyFloiIGIZCS0REDEOhJSIihqHQEhERw1BoiYiIYSi0RETEMBRaIiJiGAotERExDIWWiIgYhkJLREQMQ6ElIiKGodASERHDUGiJiIhhKLRERMQwFFoiImIYCi0RETEMhZaIiBiGQktERAxDoSUiIoah0BIREcNQaImIiGHkGVqLFi0iMDAQLy8vvLy8ePHFF9m0aZNtv9VqJTIykurVq+Pp6UloaCg//PCD3TksFgthYWF4e3vj7e1NWFgYFoulwBsjIiKPtjxDq1KlSrzzzjts376drVu3EhQUxGuvvcZ3330HwJw5c5g/fz5Tp04lNjYWNzc32rZty+XLl23n6NmzJ4mJiURHRxMdHU1iYiK9e/d+cK0SEZFHkslisVjv9iBfX1/Gjx/PG2+8QfXq1enVqxfDhg0D4MqVK/j7+zNp0iR69OjB4cOHadCgATExMTRs2BCAuLg4QkJC2LdvH/7+/gXaoKNHj+Lv74+z2ZxrmRT18kRE7lnWfbYo3NWc1o0bN1izZg1paWkEBARw8uRJkpKSaNKkia1M6dKlCQwMZO/evQDEx8dTtmxZGjRoYCvTsGFDnJycbGVERETywyE/hb7//nuaN29Oeno6Tk5OLFu2jJo1a9pCx83Nza68m5sbZ86cASA5ORlXV1dMJpNtv8lkokKFCiQnJ9/xukePHr2rxtx6XP0HcF4REbnpXu6jBdE7y1do+fv7s3PnTi5dusS6devo27cvGzZsuO+L5+e6dys/3dai6taKiDwKHvrhwRIlSvDkk0/yzDPPMH78eGrVqsWCBQvw8PAA4Ny5c3blz507h7u7OwDu7u5cuHABq/X3qTOr1cr58+dtZURERPLjnp7TyszM5Nq1a/j4+ODh4cHWrVtt+9LT04mLi7PNYQUEBJCamkp8fLytTHx8PGlpaXbzXCIiInnJc3hwwoQJNG/enMqVK5Oamkp0dDS7du1i1apVmEwm+vbty8yZM/H398fPz4/p06fj5OREhw4dAKhWrRrNmjUjPDyc2bNnAxAeHk6LFi00TCciInclz9BKSkoiLCyM5ORkypcvT82aNYmOjqZp06YADB48mCtXrjB8+HAsFgv16tVj7dq1lCtXznaOxYsXM2LECNq3bw9ASEgI77333gNqkoiIPKru6Tmth5me0xIRebAe+oUYIiIiDwOFloiIGIZCS0REDEOhJSIihqHQEhERw1BoiYiIYSi0RETEMBRaIiJiGAotERExDIWWiIgYhkJLREQMQ6ElIiKGodASERHDUGiJiIhhKLRERMQwFFoiImIYCi0RETEMhZaIiBiGQktERAxDoSUiIoah0BIREcNQaImIiGEotERExDAUWiIiYhgKLRERMQyHoq6AiIg8PMxm51z3WSwphViTnKmnJSIihqHQEhERw1BoiYiIYSi0RETEMBRaIiJiGAotERExDIWWiIgYhkJLREQMQ6ElIiKGodASERHDyDO0Zs6cSXBwMF5eXlSpUoXOnTtz6NAhuzJWq5XIyEiqV6+Op6cnoaGh/PDDD3ZlLBYLYWFheHt74+3tTVhYGBaLpUAbIyIij7Y8Q2vXrl389a9/ZdOmTaxfvx4HBwdeeeUVfv31V1uZOXPmMH/+fKZOnUpsbCxubm60bduWy5cv28r07NmTxMREoqOjiY6OJjExkd69ez+YVomIyCPJZLFYrHdzQGpqKt7e3ixfvpyQkBCsVivVq1enV69eDBs2DIArV67g7+/PpEmT6NGjB4cPH6ZBgwbExMTQsGFDAOLi4ggJCWHfvn34+/sXWIOOHj2Kv78/zmZzrmVS1MMTEclRfj4wN+s+WxTuek4rNTWVzMxMzP8fCidPniQpKYkmTZrYypQuXZrAwED27t0LQHx8PGXLlqVBgwa2Mg0bNsTJyclWRkREJC93/dUkI0eOpFatWgQEBACQlJQEgJubm105Nzc3zpw5A0BycjKurq6YTCbbfpPJRIUKFUhOTs71WkePHr3b6tmOq5/HfhERyUnud89b7533ch8tiN7ZXYXW22+/zZ49e4iJiaF48eL3ffG83EsD89NtLapurYiIkWXdOw0xPDhq1CjWrFnD+vXr8fX1tW338PAA4Ny5c3blz507h7u7OwDu7u5cuHABq/X36TOr1cr58+dtZURERPKSr9CKiIiwBVbVqlXt9vn4+ODh4cHWrVtt29LT04mLi7PNYQUEBJCamkp8fLytTHx8PGlpaXbzXCIiIneS5/DgsGHDWLlyJcuWLcNsNtvmsJycnChbtiwmk4m+ffsyc+ZM/P398fPzY/r06Tg5OdGhQwcAqlWrRrNmzQgPD2f27NkAhIeH06JFCw3ViYhIvuUZWosXLwagTZs2dtsjIiIYNWoUAIMHD+bKlSsMHz4ci8VCvXr1WLt2LeXKlbM7z4gRI2jfvj0AISEhvPfeewXWEBERefTd9XNaDzs9pyUicu8euee0REREiopCS0REDEOhJSIihqHQEhERw1BoiYiIYSi0RETEMBRaIiJiGAotERExDIWWiIgYhkJLREQMQ6ElIiKGodASERHDUGiJiIhhKLRERMQwFFoiImIYCi0RETEMhZaIiBiGQktERAxDoSUiIoah0BIREcNQaImIiGEotERExDAUWiIiYhgKLRERMQyFloiIGIZCS0REDEOhJSIihqHQEhERw1BoiYiIYSi0RETEMBRaIiJiGAotERExDIWWiIgYhkJLREQMQ6ElIiKGodASERHDUGiJiIhh5Cu0du/eTZcuXXjqqacwm80sX77cbr/VaiUyMpLq1avj6elJaGgoP/zwg10Zi8VCWFgY3t7eeHt7ExYWhsViKbCG3A2z2TnXHxEReXjlK7TS0tKoUaMGU6ZMoXTp0tn2z5kzh/nz5zN16lRiY2Nxc3Ojbdu2XL582VamZ8+eJCYmEh0dTXR0NImJifTu3bvgWiIiIo88h/wUat68Oc2bNwegX79+dvusVitRUVEMGTKENm3aABAVFYW/vz/R0dH06NGDw4cP89VXXxETE0NAQAAAs2bNIiQkhKNHj+Lv71+QbRIRkUfUfc9pnTx5kqSkJJo0aWLbVrp0aQIDA9m7dy8A8fHxlC1blgYNGtjKNGzYECcnJ1sZERGRvOSrp3UnSUlJALi5udltd3Nz48yZMwAkJyfj6uqKyWSy7TeZTFSoUIHk5ORcz3306NF7qtPRo0epf09H3vs1RUQeDbnfPW+9P97LvbIgRtXuO7QepHtp4P0ON2qoUkQkZ1n3x6Kc1rnv4UEPDw8Azp07Z7f93LlzuLu7A+Du7s6FCxewWq22/VarlfPnz9vKiIiI5OW+Q8vHxwcPDw+2bt1q25aenk5cXJxtDisgIIDU1FTi4+NtZeLj40lLS7Ob5xIREbmTfA0PpqamcuzYMQAyMzM5ffo0iYmJuLi44OXlRd++fZk5cyb+/v74+fkxffp0nJyc6NChAwDVqlWjWbNmhIeHM3v2bADCw8Np0aKFhuNERCTfTBaLxZpXoZ07d/Lyyy9n2961a1eioqKwWq1MmTKFjz76CIvFQr169Zg+fTo1atSwlbVYLIwYMYKNGzcCEBISwnvvvYfZbC641vD7WKvzHc5rIvcmWywpBVofEREjudOHLGTdH4tyTitfoWUkCi0RkXv3sIeWPntQREQMQ6ElIiKG8VA/pyUiIgXvTtMn3GH65GGgnpaIiBiGQktERAxDoSUiIoah0BIREcNQaImIiGEotERExDAUWiIiYhgKLRERMQyFloiIGIZCS0REDEOhJSIihqHQEhERw1BoiYiIYSi0RETEMBRaIiJiGAotERExDIWWiIgYhkJLREQMQ6ElIiKGodASERHDUGiJiIhhKLRERMQwFFoiImIYCi0RETEMhZaIiBiGQktERAxDoSUiIoah0BIREcNQaImIiGEotERExDAUWiIiYhgKLRERMQyFloiIGEahh9bixYupXbs2Hh4eNG7cmK+//rqwqyAiIgZVqKG1du1aRo4cydChQ9mxYwcBAQF07NiRU6dOFWY1RETEoAo1tObPn8+rr77KX/7yF6pVq8a0adPw8PDgww8/LMxqiIiIQTkU1oWuXbvGf/7zHwYOHGi3vUmTJuzdu7fAruPv7w9AisWSaxkLKQV2PRERo7nf+2PWfbYoFFpP68KFC9y4cQM3Nze77W5ubiQnJxdWNURExMC0elBERAyj0ELL1dWV4sWLc+7cObvt586dw93dvbCqISIiBlZooVWiRAmeeeYZtm7dard969atNGjQoLCqISIiBlaow4P9+/dnxYoVLF26lMOHDxMREcHZs2fp0aPHA73u8uXLqVy58gO9hojIwyQzM5MhQ4bwxBNPYDab2blzZ5HVJTQ0lOHDhxfIuQpt9SBAu3btuHjxItOmTSMpKYmnnnqKVatW4e3tXZjVEBF55G3evJnly5ezYcMGfH19cXFxKeoqFYhCDS2Anj170rNnz8K+rIjIH8qxY8fw8PB45KZfHrrVg6Ghobz11luMHj0aX19fqlSpQlRUFFevXmXYsGF4e3vz9NNP89lnn9mOmTBhAvXr18fT05NatWoxbtw40tPT73idjRs30rhxYzw8PKhduzaTJk3i2rVrD7p5IiIPXN++fXn77bc5ffo0ZrOZWrVqYbVamTNnDs888wyenp4EBgaycuVK2zEnT57EbDazZs0aWrVqhaenJ40aNeK7777j0KFDNG/enEqVKtGyZUtOnDhhO+748eN07dqVqlWrUqlSJYKCgoiJiblj/a5du8b48eOpUaMGFStWJDg4mC1btuSrbQ9daAGsXr2asmXLsmXLFoYMGcKoUaN47bXXqFKlCtu2baNLly4MGjSIs2fPAlCmTBnmzZvH3r17mTFjBmvXrmX69Om5nn/Lli2EhYXRq1cv9uzZw7x581i3bh0TJ04srCaKiDwwU6ZMYcSIEVSuXJnDhw+zdetW3n33XT755BOmT5/Onj17CA8PJzw8nE2bNtkdGxkZyZAhQ9ixYwfOzs707NmTESNGMGbMGLZs2UJ6ejoRERG28qmpqbz44ov885//ZNeuXbRu3Zru3btz5MiRXOvXv39/du/ezaJFi4iLi6Nr16506dKFgwcP5tk2k8Visd77r6bghYaGcu3aNb788ksArFYrfn5+PPvss7beVUZGBpUqVWLx4sW0adMm2zk+/PBD5s6dy7fffgvcXIgxYsQI/ve//wEQEhJCcHAwI0aMsB2zYcMGevfuzenTpzGZTA+6mSIiD9TcuXP54IMPOHjwIGlpaVSpUoW1a9cSGBhoKzNy5Eh+/vlnVq9ezcmTJ6lTpw6zZs2yLY6LiYmhS5cuLF26lNatWwPZ76c5adasGS1atLAtvggNDaVGjRpMmzaN48ePU7duXRITE/Hy8rId8+qrr1KxYkVmzJhxx3YV+pxWftSsWdP23yaTCTc3N7ttjo6OmM1m2zNf69atIyoqimPHjpGWlsaNGze4ceNGrudPSEjgwIEDzJkzx7YtMzOTK1eukJSUhKen5wNolYhI0Th8+DDp6el06NDB7k15RkZGtoVwt95rs56hvX1bWloav/32G2XKlCEtLY2pU6eyadMmzp49y/Xr10lPT7c75lYJCQlYrVYaNmxot/3q1asEBQXl2ZaHMrQcHR3t/m0ymXBwcMi2LTMzk3379vHmm28SERHB3/72N5ydnfniiy8YO3ZsrufPzMwkIiKCV155Jdu+ChUqFEgbREQeFpmZmQB8+umndr0bINu99db7b1bA3Voma1vWOceOHctXX33FpEmTqFKlCmXKlKFPnz65rhHIzMzEZDIRGxub7V5fqlSpPNvyUIbW3dizZw8VK1a0G+rL66tO6tSpw5EjR3jyyScfdPVERIpctWrVKFmyJKdOnaJx48YFeu49e/bQpUsX21RNeno6x48fp0qVKjmWr127NlarlaSkpHz1rG5n+NDy8/PjzJkzrFq1ioCAALZs2cKaNWvueMyIESPo3LkzXl5etG3bFgcHB3744Qe++eYbLcYQkUdOuXLlGDhwIGPHjsVqtfLcc8+RmprK/v37KVasGG+88cY9n7tKlSps2LCBVq1a4ejoyNSpU7l69Wqu5f38/OjUqRP9+vVj8uTJ1KlTh19//ZVdu3bh4+NjmzvLjeFDKyQkhEGDBjFq1CjS09MJDg7m7bffZujQobke07RpU1atWsW0adOYN28eDg4OVKlShVdffbUQay4iUnhGjx6Nm5sb8+bNY+jQoZQrV45atWoxePDg+zrv5MmTGThwIK1atcJsNtO3b987hhbc/G7F6dOnM27cOH755RdcXFyoW7cujRo1yvN6D93qQRERkdw8lM9piYiI5EShJSIihqHQEhERw1BoiYiIYSi0RETEMBRaIiJiGAotERExDIWWiIgYhkJLREQM4/8Ak0qugIxmjh4AAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "_titanic.plot_hist('Sex', 'Dead', 'Survived', dead, survived)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Considering the disparity of proportion of survivors in the two sexes, the feature will be added to the model.\n",
+    "\n",
+    "However, the current `Sex` feature is not in numerical value. We must create a feature `is_male` with value 0 if the passenger is female and 1 if male."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.77      0.86      0.81       154\n",
+      "           1       0.77      0.65      0.70       114\n",
+      "\n",
+      "    accuracy                           0.77       268\n",
+      "   macro avg       0.77      0.75      0.76       268\n",
+      "weighted avg       0.77      0.77      0.77       268\n",
+      "\n",
+      "score : 0.7686567164179104\n"
+     ]
+    }
+   ],
+   "source": [
+    "is_male = pd.get_dummies(train2['Sex'],drop_first=True)\n",
+    "model5 = model4.join(is_male)\n",
+    "model5_cols = model4_cols + ['male']\n",
+    "X5, y5 = _titanic.parse_model(model5, name_Y=\"Survived\", use_columns=model5_cols)\n",
+    "_titanic.logmodel_prediction(X5, y5, 0.3, 101)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Among the remaining unused features, let us check the `Name` feature, and more particularly, the title of each person."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array(['Capt', 'Col', 'Don', 'Dr', 'Jonkheer', 'Lady', 'Major', 'Master',\n",
+       "       'Miss', 'Mlle', 'Mme', 'Mr', 'Mrs', 'Ms', 'Rev', 'Sir',\n",
+       "       'the Countess'], dtype='<U12')"
+      ]
+     },
+     "execution_count": 39,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "titles = []\n",
+    "for i in range(len(train2)):\n",
+    "    titles.append(train['Name'][i].split(',')[1].split('.')[0].strip())\n",
+    "titles = np.array(titles)\n",
+    "np.unique(titles)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "According to these titles, we can assume passengers with titles \"Dr\", \"Master\", or \"the Countess\" are more likely to be saved because were dimmed more important."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.87      0.88      0.87       167\n",
+      "           1       0.80      0.78      0.79       101\n",
+      "\n",
+      "    accuracy                           0.84       268\n",
+      "   macro avg       0.83      0.83      0.83       268\n",
+      "weighted avg       0.84      0.84      0.84       268\n",
+      "\n",
+      "score : 0.8432835820895522\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/kat/.local/lib/python3.6/site-packages/sklearn/linear_model/_logistic.py:764: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
+      "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
+      "\n",
+      "Increase the number of iterations (max_iter) or scale the data as shown in:\n",
+      "    https://scikit-learn.org/stable/modules/preprocessing.html\n",
+      "Please also refer to the documentation for alternative solver options:\n",
+      "    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
+      "  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)\n"
+     ]
+    }
+   ],
+   "source": [
+    "important = np.zeros(len(train))\n",
+    "for i in range(len(train2)):\n",
+    "    name = train2['Name'][i]\n",
+    "    title = name.split(',')[1].split('.')[0].strip()\n",
+    "    if title=='Dr' or title=='Master' or title=='the Countess':\n",
+    "        important[i] = 1\n",
+    "is_important = pd.Series(important, name='is_important')\n",
+    "model6 = model5.join(is_important)\n",
+    "model6_cols = model5_cols + ['is_important']\n",
+    "X6, y6 = _titanic.parse_model(model6, name_Y=\"Survived\", use_columns=model6_cols)\n",
+    "_titanic.logmodel_prediction(X6, y6, 0.3, 102)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Comparing logistic regression to random forest resulsts"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.80      0.87      0.83       153\n",
+      "           1       0.80      0.70      0.75       115\n",
+      "\n",
+      "    accuracy                           0.80       268\n",
+      "   macro avg       0.80      0.79      0.79       268\n",
+      "weighted avg       0.80      0.80      0.80       268\n",
+      "\n",
+      "score:  0.7985074626865671\n"
+     ]
+    }
+   ],
+   "source": [
+    "_titanic.random_forest_prediction(X6, y6, 0.3, 404, 100)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 42,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.81      0.84      0.83       154\n",
+      "           1       0.78      0.73      0.75       114\n",
+      "\n",
+      "    accuracy                           0.79       268\n",
+      "   macro avg       0.79      0.79      0.79       268\n",
+      "weighted avg       0.79      0.79      0.79       268\n",
+      "\n",
+      "score:  0.7947761194029851\n"
+     ]
+    }
+   ],
+   "source": [
+    "_titanic.RFE_predicion(X6, y6, 0.3, 101, 8)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Parameters chosen:  {'max_depth': 8, 'min_samples_leaf': 5, 'min_samples_split': 10, 'n_estimators': 150}\n",
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.82      0.94      0.88       165\n",
+      "           1       0.87      0.67      0.76       103\n",
+      "\n",
+      "    accuracy                           0.84       268\n",
+      "   macro avg       0.85      0.80      0.82       268\n",
+      "weighted avg       0.84      0.84      0.83       268\n",
+      "\n",
+      "score:  0.835820895522388\n"
+     ]
+    }
+   ],
+   "source": [
+    "_titanic.GSCV_prediction(X6, y6, 0.3, 64)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "              precision    recall  f1-score   support\n",
+      "\n",
+      "           0       0.86      0.88      0.87       167\n",
+      "           1       0.80      0.77      0.78       101\n",
+      "\n",
+      "    accuracy                           0.84       268\n",
+      "   macro avg       0.83      0.83      0.83       268\n",
+      "weighted avg       0.84      0.84      0.84       268\n",
+      "\n",
+      "score : 0.8395522388059702\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/home/kat/.local/lib/python3.6/site-packages/sklearn/linear_model/_logistic.py:764: ConvergenceWarning: lbfgs failed to converge (status=1):\n",
+      "STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.\n",
+      "\n",
+      "Increase the number of iterations (max_iter) or scale the data as shown in:\n",
+      "    https://scikit-learn.org/stable/modules/preprocessing.html\n",
+      "Please also refer to the documentation for alternative solver options:\n",
+      "    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression\n",
+      "  extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)\n"
+     ]
+    }
+   ],
+   "source": [
+    "embark = pd.get_dummies(train2['Embarked'])\n",
+    "model7 = model6.join(embark)\n",
+    "model7_cols = model6_cols+['C', 'Q', 'S']\n",
+    "X7, y7 = _titanic.parse_model(model7, name_Y=\"Survived\", use_columns=model7_cols)\n",
+    "_titanic.logmodel_prediction(X7, y7, 0.3, 102)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "_titanic.GSCV_prediction(X7, y7, 0.3, 64)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "After numerous tries, during which we tried to dummify the selected features and adding others, we were unable to achieve a higher score.\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Conclusion\n",
+    "\n",
+    "The study of this dataset allowed us to choose features in order to predict the survival of a passenger.\n",
+    "\n",
+    "In this study, the following features were chosen : \n",
+    " - `SibSp`\n",
+    " - `Parch`\n",
+    " - `Fare`\n",
+    " - `Pclass`\n",
+    " - `Age`\n",
+    " - `Sex`\n",
+    " - `Name`\n",
+    " - `Embark`\n",
+    "\n",
+    "Among these features, we dummified the features of `Sex` and `Embark` and we created categories for the features `Age` and `Name`.\n",
+    "\n",
+    "Our study lead to a prediction with a score of 85%."
+   ]
   }
  ],
  "metadata": {
@@ -398,9 +1794,9 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.8.5-final"
+   "version": "3.6.9"
   }
  },
  "nbformat": 4,
  "nbformat_minor": 2
-}
\ No newline at end of file
+}
-- 
GitLab