diff --git a/.gitignore b/.gitignore index b1db3f291983c114d523b100e9c3ae149e731c23..08ab719c7ab57a2c8438443652cd11f1572c5f0e 100644 --- a/.gitignore +++ b/.gitignore @@ -3,4 +3,5 @@ data/ env/ media/ models/ - +build/ +*.egg-info \ No newline at end of file diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 0000000000000000000000000000000000000000..7c6af3d33e05eaea206a2d73856b5224bcbe2b3d --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,4 @@ +include requirements.txt +include README.md +include preprocess_media.sh +recursive-include autokara * diff --git a/autokara/__init__.py b/autokara/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..b31ecc406afe6e17bb27fe80f20ed10e8516b16f --- /dev/null +++ b/autokara/__init__.py @@ -0,0 +1,2 @@ + +__version__ = "0.1.0" \ No newline at end of file diff --git a/autokara/autokara.py b/autokara/autokara.py index 8fe6f2e6eafc35e54f1f1c6dab83e3f1bab72dce..e5d9e21da7dc6c38ac0a331baa7ecdbb968fe7db 100644 --- a/autokara/autokara.py +++ b/autokara/autokara.py @@ -5,64 +5,90 @@ import subprocess import shlex from pathlib import Path -from autosyl.assUtils import AssWriter, getSyls, getHeader -from autosyl.segment import segment +from .autosyl.assUtils import AssWriter, getSyls, getHeader +from .autosyl.segment import segment -parser = argparse.ArgumentParser(description='AutoKara - Automatic karaoke timing tool') -parser.add_argument("source_file", type=str, help="The video/audio file to time") -parser.add_argument("ass_file", type=str, help="The ASS file with lyrics to time") -parser.add_argument("--vocals", action="store_true", help="Treat the input as vocals file, i.e. do not perform vocals extraction") -parser.add_argument("-o", "--output", help="Write output to specified file. If absent, overwrite source file") -parser.add_argument("-v","--verbose", action="store_true", help="Increased verbosity") -parser.add_argument("-l","--lang", help="Select language to use (default is Japanese Romaji)") -args = parser.parse_args() +def main(opts=None): -ass_file = args.ass_file -verbose = args.verbose + from g2p import __path__ as g2p_path -if not args.vocals : - print("Extracting audio from video file...") - Path("./media/audio").mkdir(parents=True, exist_ok=True) - basename = Path(args.source_file).stem - audio_file = "media/audio/%s.wav" % basename + HERE = Path(__file__).parent + g2p_base = Path(g2p_path[0]) + if not Path.exists(g2p_base / "mappings/langs/rji"): + print("No Romaji language mapping found, attempting first-time setup") + mapping_dir = HERE / "g2p/mappings/langs/" + mappings = glob.glob(f"{str(mapping_dir):s}/*") + for map in mappings: + subprocess.check_call(shlex.split(f'cp -r {map:s} {str(g2p_base):s}/mappings/langs/')) + subprocess.check_call(shlex.split(f'g2p update')) + + if not Path.exists(g2p_base / "mappings/langs/rji"): + print("ERROR : Failed to find language mapping") + else: + print("Setup successful") - subprocess.call(shlex.split('./extractWav.sh "%s" "%s"' % (args.source_file, audio_file))) - Path("./media/vocals").mkdir(parents=True, exist_ok=True) - output_folder = "./media/vocals" - print("Isolating vocals...") + parser = argparse.ArgumentParser(description='AutoKara - Automatic karaoke timing tool') + parser.add_argument("source_file", type=str, help="The video/audio file to time") + parser.add_argument("ass_file", type=str, help="The ASS file with lyrics to time") + parser.add_argument("--vocals", action="store_true", help="Treat the input as vocals file, i.e. do not perform vocals extraction") + parser.add_argument("-o", "--output", help="Write output to specified file. If absent, overwrite source file") + parser.add_argument("-v","--verbose", action="store_true", help="Increased verbosity") + parser.add_argument("-l","--lang", help="Select language to use (default is Japanese Romaji)") - # Not working, don't know why - # demucs.separate.main(shlex.split('--two-stems vocals -o "%s" "%s"' % (output_folder, audio_file))) - subprocess.call(shlex.split('demucs --two-stems vocals -o "%s" "%s"' % (output_folder, audio_file))) + args = parser.parse_args(opts) - vocals_file = "./media/vocals/htdemucs/%s/vocals.wav" % basename -else: - vocals_file = args.source_file + ass_file = args.ass_file + verbose = args.verbose + if not args.vocals : + print("Extracting audio from video file...") + Path("./media/audio").mkdir(parents=True, exist_ok=True) + basename = Path(args.source_file).stem + audio_file = "media/audio/%s.wav" % basename + subprocess.call(shlex.split('./extractWav.sh "%s" "%s"' % (args.source_file, audio_file))) -print("Identifying syl starts...") + Path("./media/vocals").mkdir(parents=True, exist_ok=True) + output_folder = "./media/vocals" + print("Isolating vocals...") -if verbose: - print("Retrieving syls from lyrics...") -reference_syls, line_meta = getSyls(ass_file) + # Not working, don't know why + # demucs.separate.main(shlex.split('--two-stems vocals -o "%s" "%s"' % (output_folder, audio_file))) + subprocess.call(shlex.split('demucs --two-stems vocals -o "%s" "%s"' % (output_folder, audio_file))) -if verbose: - print("Starting syl detection...") -syls = segment(vocals_file, reference_syls=reference_syls, verbose=verbose, language=args.lang) -print(syls) -print(line_meta) + vocals_file = "./media/vocals/htdemucs/%s/vocals.wav" % basename + else: + vocals_file = args.source_file -print("Syls found, writing ASS file...") -header = getHeader(ass_file) -writer = AssWriter() -writer.openAss(args.output if args.output else ass_file) -writer.writeHeader(header=header) -writer.writeSyls(syls, line_meta) -writer.closeAss() + + + print("Identifying syl starts...") + + + if verbose: + print("Retrieving syls from lyrics...") + reference_syls, line_meta = getSyls(ass_file) + + if verbose: + print("Starting syl detection...") + syls = segment(vocals_file, reference_syls=reference_syls, verbose=verbose, language=args.lang) + print(syls) + print(line_meta) + + print("Syls found, writing ASS file...") + header = getHeader(ass_file) + writer = AssWriter() + writer.openAss(args.output if args.output else ass_file) + writer.writeHeader(header=header) + writer.writeSyls(syls, line_meta) + writer.closeAss() + + +if __name__ == "__main__": + main() diff --git a/autokara/autosyl/LyricsAlignment/model.py b/autokara/autosyl/LyricsAlignment/model.py index f6fd66b10cb934ee1911b50d35b6bbcd13a9320f..50120c275151ad17e553ee01eb53a9d76c420962 100644 --- a/autokara/autosyl/LyricsAlignment/model.py +++ b/autokara/autosyl/LyricsAlignment/model.py @@ -4,7 +4,7 @@ import torch.nn.functional as F import torchaudio import warnings -from autosyl.LyricsAlignment.utils import notes_to_pc +from .utils import notes_to_pc # following FFT parameters are designed for a 22.5k sampling rate sr = 22050 diff --git a/autokara/autosyl/LyricsAlignment/wrapper.py b/autokara/autosyl/LyricsAlignment/wrapper.py index 9e43b4bbe9c59074141669cb7aa11f9e357f91a6..f308ef9872955f4fdf4d45ce384c814fbee8664d 100644 --- a/autokara/autosyl/LyricsAlignment/wrapper.py +++ b/autokara/autosyl/LyricsAlignment/wrapper.py @@ -5,8 +5,8 @@ import torch import torch.nn as nn import torch.nn.functional as F -import autosyl.LyricsAlignment.utils as utils -from autosyl.LyricsAlignment.model import train_audio_transforms, AcousticModel, BoundaryDetection +from . import utils +from .model import train_audio_transforms, AcousticModel, BoundaryDetection np.random.seed(7) diff --git a/autokara/autosyl/segment.py b/autokara/autosyl/segment.py index 6a54e36c971c2c60596bae459872a58418b63000..84a5ac9bb42f4e6e2354d747cc9c80402255eff2 100644 --- a/autokara/autosyl/segment.py +++ b/autokara/autosyl/segment.py @@ -5,9 +5,10 @@ import re import matplotlib.pyplot as plt import scipy.signal as sg import parselmouth +from pathlib import Path -from autosyl.assUtils import getSyls, timeToDate, dateToTime -from autosyl.LyricsAlignment.wrapper import align, preprocess_from_file +from .assUtils import getSyls, timeToDate, dateToTime +from .LyricsAlignment.wrapper import align, preprocess_from_file @@ -22,7 +23,7 @@ def segment(songfile, reference_syls=None, syls_per_line=10, last_syl_dur=500, v word_file = None # example: jamendolyrics/lyrics/*.words.txt"; Set to None if you don't have it method = "MTL_BDR" # "Baseline", "MTL", "Baseline_BDR", "MTL_BDR" cuda=False # set True if you have access to a GPU - checkpoint_folder = "./autosyl/LyricsAlignment/checkpoints" + checkpoint_folder = f"{str(Path(__file__).parent):s}/LyricsAlignment/checkpoints" language = language diff --git a/autokara/plot_syls.py b/autokara/plot_syls.py index e86960430761fc37dcc54ebfc60dbcc1a1361da1..9383639fc6cf3ab2a285eeaf9f8518ae8c53f9b5 100644 --- a/autokara/plot_syls.py +++ b/autokara/plot_syls.py @@ -7,8 +7,8 @@ import scipy.signal as sg import parselmouth import argparse -from autosyl.assUtils import getSyls, timeToDate, dateToTime -from autosyl.LyricsAlignment.wrapper import align, preprocess_from_file +from .autosyl.assUtils import getSyls, timeToDate, dateToTime +from .autosyl.LyricsAlignment.wrapper import align, preprocess_from_file ############################################################################## @@ -20,172 +20,176 @@ from autosyl.LyricsAlignment.wrapper import align, preprocess_from_file # ############################################################################## +def main(opts=None): + parser = argparse.ArgumentParser(description='AutoKara - Automatic karaoke timing tool') + parser.add_argument("vocals_file", type=str, help="The audio file to time") + parser.add_argument("ass_file", type=str, help="The ASS file with lyrics to time") -parser = argparse.ArgumentParser(description='AutoKara - Automatic karaoke timing tool') -parser.add_argument("vocals_file", type=str, help="The audio file to time") -parser.add_argument("ass_file", type=str, help="The ASS file with lyrics to time") + args = parser.parse_args() -args = parser.parse_args() + songfile = args.vocals_file + reference_syls, line_meta = getSyls(sys.argv[2]) -songfile = args.vocals_file -reference_syls, line_meta = getSyls(sys.argv[2]) + print(reference_syls) -print(reference_syls) + backtrack = False -backtrack = False + audio_file = songfile # pre-computed source-separated vocals; These models do not work with mixture input. + word_file = None # example: jamendolyrics/lyrics/*.words.txt"; Set to None if you don't have it + method = "MTL_BDR" # "Baseline", "MTL", "Baseline_BDR", "MTL_BDR" + cuda=True # set True if you have access to a GPU + checkpoint_folder = "./autosyl/LyricsAlignment/checkpoints" -audio_file = songfile # pre-computed source-separated vocals; These models do not work with mixture input. -word_file = None # example: jamendolyrics/lyrics/*.words.txt"; Set to None if you don't have it -method = "MTL_BDR" # "Baseline", "MTL", "Baseline_BDR", "MTL_BDR" -cuda=True # set True if you have access to a GPU -checkpoint_folder = "./autosyl/LyricsAlignment/checkpoints" + pred_file = "./MTL.csv" # saved alignment results, "(float) start_time, (float) end_time, (string) word" -pred_file = "./MTL.csv" # saved alignment results, "(float) start_time, (float) end_time, (string) word" + lyrics_lines = [" ".join([syl[1] for syl in line]) for line in reference_syls] + #print(lyrics_lines) -lyrics_lines = [" ".join([syl[1] for syl in line]) for line in reference_syls] -#print(lyrics_lines) + # load audio and lyrics + # words: a list of words + # lyrics_p: phoneme sequence of the target lyrics + # idx_word_p: indices of word start in lyrics_p + # idx_line_p: indices of line start in lyrics_p + audio, words, lyrics_p, idx_word_p, idx_line_p = preprocess_from_file(audio_file, lyrics_lines, word_file) -# load audio and lyrics -# words: a list of words -# lyrics_p: phoneme sequence of the target lyrics -# idx_word_p: indices of word start in lyrics_p -# idx_line_p: indices of line start in lyrics_p -audio, words, lyrics_p, idx_word_p, idx_line_p = preprocess_from_file(audio_file, lyrics_lines, word_file) + # compute alignment + # word_align: a list of frame indices aligned to each word + # words: a list of words + word_align, words = align(audio, words, lyrics_p, idx_word_p, idx_line_p, method=method, cuda=False, checkpoint_folder=checkpoint_folder) -# compute alignment -# word_align: a list of frame indices aligned to each word -# words: a list of words -word_align, words = align(audio, words, lyrics_p, idx_word_p, idx_line_p, method=method, cuda=False, checkpoint_folder=checkpoint_folder) + print([[word_align[i][0], word_align[i][1], words[i]] for i in range(len(word_align))]) + words_onsets = np.array([word_align[i][0] for i in range(len(word_align))]) -print([[word_align[i][0], word_align[i][1], words[i]] for i in range(len(word_align))]) -words_onsets = np.array([word_align[i][0] for i in range(len(word_align))]) + cnn = madmom.features.onsets.CNNOnsetProcessor() + spectral = madmom.features.onsets.SpectralOnsetProcessor('modified_kullback_leibler') -cnn = madmom.features.onsets.CNNOnsetProcessor() -spectral = madmom.features.onsets.SpectralOnsetProcessor('modified_kullback_leibler') + sig = madmom.audio.signal.Signal(songfile, num_channels=1) + parsel = parselmouth.Sound(sig) -sig = madmom.audio.signal.Signal(songfile, num_channels=1) -parsel = parselmouth.Sound(sig) + spec = madmom.audio.spectrogram.Spectrogram(sig) + filt_spec = madmom.audio.spectrogram.FilteredSpectrogram(spec, filterbank=madmom.audio.filters.LogFilterbank, num_bands=24) + log_spec = madmom.audio.spectrogram.LogarithmicSpectrogram(filt_spec, add=1) -spec = madmom.audio.spectrogram.Spectrogram(sig) -filt_spec = madmom.audio.spectrogram.FilteredSpectrogram(spec, filterbank=madmom.audio.filters.LogFilterbank, num_bands=24) -log_spec = madmom.audio.spectrogram.LogarithmicSpectrogram(filt_spec, add=1) + magnitude = np.max(log_spec[:,:100], axis=1) -magnitude = np.max(log_spec[:,:100], axis=1) + cnn_function = cnn(sig) + spectral_function = spectral(sig) + spectral_function = spectral_function/(spectral_function.max()) -cnn_function = cnn(sig) -spectral_function = spectral(sig) -spectral_function = spectral_function/(spectral_function.max()) + #activation_function = 0.5*cnn_function + 0.5*spectral_function + activation_function = (2 * cnn_function * spectral_function)/(cnn_function + spectral_function) + #activation_function = np.where(spectral_function > 0.14, cnn_function, 0) + #onsets = proc(activation_function) -#activation_function = 0.5*cnn_function + 0.5*spectral_function -activation_function = (2 * cnn_function * spectral_function)/(cnn_function + spectral_function) -#activation_function = np.where(spectral_function > 0.14, cnn_function, 0) -#onsets = proc(activation_function) + if reference_syls: + activation_threshold = 0.1 + else: + activation_threshold = 0.2 -if reference_syls: - activation_threshold = 0.1 -else: - activation_threshold = 0.2 - -activation_smoothed = madmom.audio.signal.smooth(activation_function, 20) -cnn_smoothed = madmom.audio.signal.smooth(cnn_function, 20) -onsets = madmom.features.onsets.peak_picking(activation_smoothed, threshold=activation_threshold, smooth=0) -#onsets = np.array([o for o in onsets if cnn_smoothed[o] > 0.1]) - -pitch = parsel.to_pitch() -pitch_values = pitch.selected_array['frequency'] - -pad_before = round(pitch.xs()[0]*100) -pad_after = len(magnitude) - len(pitch_values) - pad_before - -pitch_values = np.pad(pitch_values, (pad_before, pad_after), 'constant', constant_values=(0,0)) - -mask_function = magnitude * pitch_values -mask_function = mask_function/np.max(mask_function) -mask_threshold = 0.15 -mask_window = [1,6] -invalid_onsets_idx = [] - -for i in range(len(onsets)): - if np.max(mask_function[onsets[i]+mask_window[0]:onsets[i]+mask_window[1]]) < mask_threshold: - invalid_onsets_idx.append(i) - -onsets = np.delete(onsets, invalid_onsets_idx) + activation_smoothed = madmom.audio.signal.smooth(activation_function, 20) + cnn_smoothed = madmom.audio.signal.smooth(cnn_function, 20) + onsets = madmom.features.onsets.peak_picking(activation_smoothed, threshold=activation_threshold, smooth=0) + #onsets = np.array([o for o in onsets if cnn_smoothed[o] > 0.1]) + pitch = parsel.to_pitch() + pitch_values = pitch.selected_array['frequency'] + pad_before = round(pitch.xs()[0]*100) + pad_after = len(magnitude) - len(pitch_values) - pad_before -if reference_syls: - filtered_onsets = [] - line_index = 0 - for line in reference_syls: - line_index += 1 - syl_number = len(line) - 1 - line_onsets = [o for o in onsets if (o >= line[0][0] and o <= line[-1][0])] - line_onsets.sort(reverse=True, key=(lambda x: activation_smoothed[x])) - if syl_number > len(line_onsets): - print("WARNING : failed to detect enough onsets in line %d (%d, %d)" % (line_index, line[0][0], line[-1][0])) - filtered_onsets += line_onsets[0:syl_number] - - onsets = np.array(sorted(filtered_onsets)) + pitch_values = np.pad(pitch_values, (pad_before, pad_after), 'constant', constant_values=(0,0)) + mask_function = magnitude * pitch_values + mask_function = mask_function/np.max(mask_function) + mask_threshold = 0.15 + mask_window = [1,6] + invalid_onsets_idx = [] -""" - if word_index > 0: - word_start = max(word_align[word_index][0] - 5, line[0][0], previous_onset+1) - else: - word_start = line[0][0] - if word_index < len(words) - 1 and syl_index < len(line) - 2: - word_end = min(line[-1][0], word_align[word_index + 1][0] - 5) - else: - word_end = line[-1][0] - - word_onsets = [o for o in onsets if (o >= word_start and o <= word_end)] - word_onsets.sort(reverse=True, key=(lambda x: activation_smoothed[x])) - if word_syl_count > len(word_onsets): - print("WARNING : failed to detect enough onsets in word %s (%d, %d)" % (word_tmp, word_start, word_end)) - filtered_onsets += word_onsets[0:word_syl_count] - print(word_onsets[0:word_syl_count]) - previous_onset = max(word_onsets[0:word_syl_count] + [0]) -""" - -# Backtrack onsets to closest earlier local minimum -if backtrack: - backtrack_max_frames = 50 for i in range(len(onsets)): - initial_onset = onsets[i] - while(activation_smoothed[onsets[i] - 1] < activation_smoothed[onsets[i]] and onsets[i] > initial_onset - backtrack_max_frames): - onsets[i] -= 1 - -#print(onsets/100) -print(words_onsets/100) - -if reference_syls: - reference_onsets = [syl[0]+8 for line in reference_syls for syl in line[:-1]] - -fig, axs = plt.subplots(nrows=2, sharex=True) -axs[0].imshow(log_spec.T, origin='lower', aspect='auto') -if reference_syls: - axs[0].vlines(reference_onsets, 0, 140, colors='red') -axs[0].plot((pitch_values/np.max(pitch_values))*140, color='yellow') -axs[1].plot(mask_function) -#axs[1].plot(cnn_smoothed) -#axs[1].plot(spectral_function, color='green') -axs[1].plot(activation_smoothed, color='orange') -axs[1].vlines(onsets, 0, 2, colors='red') -axs[1].vlines(words_onsets, 0, 3, colors='m') -axs[1].hlines([max(mask_threshold, 0), activation_threshold], 0, onsets[-1]+100, colors='black') - -#bins = np.arange(0, 1, 0.02) -#hist, hist_axs = plt.subplots(nrows=1) -#hist_axs.hist(mask_function, bins=bins) - -plt.show() \ No newline at end of file + if np.max(mask_function[onsets[i]+mask_window[0]:onsets[i]+mask_window[1]]) < mask_threshold: + invalid_onsets_idx.append(i) + + onsets = np.delete(onsets, invalid_onsets_idx) + + + + if reference_syls: + filtered_onsets = [] + line_index = 0 + for line in reference_syls: + line_index += 1 + syl_number = len(line) - 1 + line_onsets = [o for o in onsets if (o >= line[0][0] and o <= line[-1][0])] + line_onsets.sort(reverse=True, key=(lambda x: activation_smoothed[x])) + if syl_number > len(line_onsets): + print("WARNING : failed to detect enough onsets in line %d (%d, %d)" % (line_index, line[0][0], line[-1][0])) + filtered_onsets += line_onsets[0:syl_number] + + onsets = np.array(sorted(filtered_onsets)) + + + """ + if word_index > 0: + word_start = max(word_align[word_index][0] - 5, line[0][0], previous_onset+1) + else: + word_start = line[0][0] + if word_index < len(words) - 1 and syl_index < len(line) - 2: + word_end = min(line[-1][0], word_align[word_index + 1][0] - 5) + else: + word_end = line[-1][0] + + word_onsets = [o for o in onsets if (o >= word_start and o <= word_end)] + word_onsets.sort(reverse=True, key=(lambda x: activation_smoothed[x])) + if word_syl_count > len(word_onsets): + print("WARNING : failed to detect enough onsets in word %s (%d, %d)" % (word_tmp, word_start, word_end)) + filtered_onsets += word_onsets[0:word_syl_count] + print(word_onsets[0:word_syl_count]) + previous_onset = max(word_onsets[0:word_syl_count] + [0]) + """ + + # Backtrack onsets to closest earlier local minimum + if backtrack: + backtrack_max_frames = 50 + for i in range(len(onsets)): + initial_onset = onsets[i] + while(activation_smoothed[onsets[i] - 1] < activation_smoothed[onsets[i]] and onsets[i] > initial_onset - backtrack_max_frames): + onsets[i] -= 1 + + #print(onsets/100) + print(words_onsets/100) + + if reference_syls: + reference_onsets = [syl[0]+8 for line in reference_syls for syl in line[:-1]] + + fig, axs = plt.subplots(nrows=2, sharex=True) + axs[0].imshow(log_spec.T, origin='lower', aspect='auto') + if reference_syls: + axs[0].vlines(reference_onsets, 0, 140, colors='red') + axs[0].plot((pitch_values/np.max(pitch_values))*140, color='yellow') + axs[1].plot(mask_function) + #axs[1].plot(cnn_smoothed) + #axs[1].plot(spectral_function, color='green') + axs[1].plot(activation_smoothed, color='orange') + axs[1].vlines(onsets, 0, 2, colors='red') + axs[1].vlines(words_onsets, 0, 3, colors='m') + axs[1].hlines([max(mask_threshold, 0), activation_threshold], 0, onsets[-1]+100, colors='black') + + #bins = np.arange(0, 1, 0.02) + #hist, hist_axs = plt.subplots(nrows=1) + #hist_axs.hist(mask_function, bins=bins) + + plt.show() + + +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/autokara/update_lang_db.py b/autokara/update_lang_db.py new file mode 100644 index 0000000000000000000000000000000000000000..6e0c63e926ebef29287967a04d7fbed6c53cb9f8 --- /dev/null +++ b/autokara/update_lang_db.py @@ -0,0 +1,28 @@ +import subprocess +import shlex +from pathlib import Path +import glob + + +def main(): + from g2p import __path__ as g2p_path + + HERE = Path(__file__).parent + g2p_base = Path(g2p_path[0]) + + print("Regenerating custom language mappings...") + mapping_dir = HERE / "g2p/mappings/langs/" + mappings = glob.glob(f"{str(mapping_dir):s}/*") + for map in mappings: + subprocess.check_call(shlex.split(f'cp -r {map:s} {str(g2p_base):s}/mappings/langs/')) + subprocess.check_call(shlex.split(f'g2p update')) + + if not Path.exists(g2p_base / "mappings/langs/rji"): + print("ERROR : Failed to find language mapping") + else: + print("Setup successful") + + + +if __name__ == "__main__": + main() diff --git a/requirements.txt b/requirements.txt index 04299146d72785e9cf25e747f7bcea65dd11d05c..1574a1b402f57d64880c618eb05472c3fd8879fc 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,15 +1,9 @@ librosa demucs -chainer soundfile -sklearn matplotlib numpy -tqdm -scipy -cython -mido -git+https://github.com/CPJKU/madmom.git +madmom@git+https://github.com/CPJKU/madmom.git praat-parselmouth future musdb diff --git a/setup.py b/setup.py new file mode 100644 index 0000000000000000000000000000000000000000..6f9b33985caa38b4b5217591a26ac3df162efb1c --- /dev/null +++ b/setup.py @@ -0,0 +1,64 @@ + +from pathlib import Path +from setuptools import setup, find_packages +import atexit +from setuptools.command.install import install +import subprocess +import shlex +import glob + + +NAME = 'autokara' +DESCRIPTION = 'Automatic karaoke timing' + +URL = 'https://git.iiens.net/bakaclub/autokara' +AUTHOR = 'Loïc "Sting" Allègre' +REQUIRES_PYTHON = '>=3.8.0' + +HERE = Path(__file__).parent + +# Get version without explicitly loading the module. +for line in open('autokara/__init__.py'): + line = line.strip() + if '__version__' in line: + context = {} + exec(line, context) + VERSION = context['__version__'] + + +def load_requirements(name): + required = [i.strip() for i in open(HERE / name)] + required = [i for i in required if not i.startswith('#')] + print(required) + return required + + +REQUIRED = load_requirements('requirements.txt') +ALL_REQUIRED = load_requirements('requirements.txt') + + +setup( + name=NAME, + version=VERSION, + description=DESCRIPTION, + author=AUTHOR, + python_requires=REQUIRES_PYTHON, + url=URL, + packages=find_packages(), + install_requires=REQUIRED, + include_package_data=True, + entry_points={ + 'console_scripts': ['autokara=autokara.autokara:main', + 'autokara-plot=autokara.plot_syls:main', + 'autokara-gen-lang=autokara.update_lang_db:main' + ], + }, + license='MIT License', + classifiers=[ + # Trove classifiers + # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers + 'License :: OSI Approved :: MIT License', + 'Topic :: Multimedia :: Sound/Audio', + 'Topic :: Scientific/Engineering :: Artificial Intelligence', + ], +)